Cognitive and Neurophysiological Representations of Impossible Space [CoNRIS]

不可能空间的认知和神经生理学表征 [CoNRIS]

基本信息

项目摘要

Spatial navigation is one of the most fundamental abilities to survival that mobile species have evolved. The human brain contains a host of neural systems that combine together to form a spatial representation of the environment to enable successful navigation. Whilst research in recent decades has revealed much about these neural systems, the format of the integrated cognitive representation is less well understood. Two dominant theories exist: cognitive map and cognitive graph theory. Cognitive map theory suggests that spatial information is encoded in a global Euclidean reference frame, such that metric relationships between places are interdependent. Cognitive graph theory on the other hand describes spatial knowledge as independent chunks of information, that are linked together by experience (e.g. the post office and the bakery are linked by a left turn and a 100-meter walk). In this project, we aim to investigate: (1) whether humans integrate spatial knowledge into single or multiple representations; (2) if the format of those representations conform to the principles of cognitive map and/or cognitive graph theory; and (3) how different sensory modalities contribute to spatial knowledge by contrasting brain dynamics during full mobile with navigation of identical environments in stationary setups. To achieve these objectives, we will bring together key experimental methods that have previously been used separately to investigate spatial navigation behaviour. First, the recording of brain activity in physically moving participants as compared to stationary protocols to examine the neural systems involved with different aspects of navigation; the use of the impossible space paradigm to present participants with space that would never be possible the real world (enabled by virtual reality); the use of head mounted displays (HMDs) and motion tracking to enable participants to physically move during the navigation experiments. In four experiments using the impossible space paradigm, participants will navigate environments where the metric information derived from vision and movement either corresponds to their spatial location (possible) or does not correspond to their spatial location (impossible; e.g. a triangle trajectory where the turning angles do not sum to 180°). The logic behind the impossible space paradigm is that these spaces should prove difficult for participants to represent on a behavioural and neural level under cognitive map theory, but not under cognitive graph theory. These navigation tasks will be presented either on stationary desktop setups or fully mobile HMD setups to contrast the role of movement and body-based feedback to the brain’s navigation network. In order to study brain activity, we will use state-of-the-art mobile EEG recording and analysis techniques, alongside tracking of eye-movements and physical position in space for a multimodal approach to understanding human navigation.
空间导航是移动的物种进化出的最基本的生存能力之一。人类大脑包含大量的神经系统,这些神经系统联合收割机一起形成环境的空间表示,以实现成功的导航。虽然近几十年来的研究已经揭示了很多关于这些神经系统的信息,但整合认知表征的形式却不太清楚。有两个主要的理论:认知地图和认知图理论。认知地图理论认为,空间信息被编码在一个全球欧几里得参考框架中,这样地方之间的度量关系是相互依赖的。另一方面,认知图理论将空间知识描述为独立的信息块,这些信息块通过经验联系在一起(例如,邮局和面包店通过左转和100米步行联系在一起)。在这个项目中,我们的目标是调查:(1)人类是否将空间知识整合到单个或多个表征中;(2)这些表征的格式是否符合认知地图和/或认知图论的原则;(3)不同的感觉方式如何通过对比完全移动的与固定设置中相同环境的导航过程中的大脑动力学来促进空间知识。为了实现这些目标,我们将把以前分别用于研究空间导航行为的关键实验方法汇集在一起。首先,记录身体移动参与者的大脑活动,与固定协议相比,以检查与导航不同方面有关的神经系统;使用不可能的空间范式向参与者呈现永远不可能的空间真实的世界(通过虚拟现实实现);使用头戴式显示器(HMD)和运动跟踪,使参与者能够在导航实验期间进行物理移动。在使用不可能空间范式的四个实验中,参与者将在其中来自视觉和运动的度量信息对应于他们的空间位置(可能)或不对应于他们的空间位置(不可能;例如,三角形轨迹,其中转弯角之和不等于180°)的环境中导航。不可能空间范式背后的逻辑是,这些空间应该证明参与者在认知地图理论下难以在行为和神经水平上表示,但在认知图理论下则不然。这些导航任务将在固定的桌面设置或完全移动的HMD设置上呈现,以对比运动和基于身体的反馈对大脑导航网络的作用。为了研究大脑活动,我们将使用最先进的移动的EEG记录和分析技术,同时跟踪眼球运动和空间中的物理位置,以实现多模式方法来理解人类导航。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Klaus Gramann其他文献

Professor Dr. Klaus Gramann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Klaus Gramann', 18)}}的其他基金

Digital Product - Digital User (DPDU)
数字产品 - 数字用户 (DPDU)
  • 批准号:
    396560184
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Mobile Brain/Body Imaging of Spatial Navigation
空间导航的移动脑/身体成像
  • 批准号:
    321967722
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Strategien räumlicher Orientierung: neuroanatomische und elektrokortikale Grundlagen ego- und allozentrischer Referenzsysteme
空间定向策略:自我和异体参考系统的神经解剖学和皮层电基础
  • 批准号:
    15029011
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Units
Elektrokortikale Korrelate bei der visuellen Suche nach pop-out Zielreizen
电皮层与弹出目标刺激的视觉搜索相关
  • 批准号:
    5431518
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Brain Dynamics in Cyber-Physical Systems as Measure of User Presence
网络物理系统中的大脑动力学作为用户存在的测量
  • 批准号:
    462163815
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Personalised neurostimulation for Parkinson's inspired by neurophysiological improvements observed after physical exercise
帕金森氏症的个性化神经刺激受到体育锻炼后观察到的神经生理学改善的启发
  • 批准号:
    MR/Y014863/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Research and development of behavioral and neurophysiological mechanisms of sensorimotor and emotional control methods using language
使用语言进行感觉运动和情绪控制方法的行为和神经生理学机制的研究和开发
  • 批准号:
    23H00624
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Neurophysiological analysis of oral function improvement using diffusion tensor imaging
使用扩散张量成像对口腔功能改善进行神经生理学分析
  • 批准号:
    23K09291
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Neurophysiological mechanism underlying freezing of gait in Parkinson's disease: transcutaneous spinal cord stimulation for gait disturbance
帕金森病步态冻结的神经生理机制:经皮脊髓刺激治疗步态障碍
  • 批准号:
    23K10409
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study of stuttering on neurophysiological mechanisms
口吃的神经生理机制研究
  • 批准号:
    22KJ0391
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Alcohol use, physical activity, and neurophysiological indicators of behavioral adaptability
饮酒、体力活动和行为适应性的神经生理学指标
  • 批准号:
    10609697
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Regulation of complex emotions and thoughts induced by recall of memories of interpersonal stress: A neurophysiological study
人际压力记忆的回忆引起的复杂情绪和思想的调节:一项神经生理学研究
  • 批准号:
    23K03015
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of human-machine interface based on elucidation of motor neurophysiological mechanism
基于阐明运动神经生理机制的人机界面开发
  • 批准号:
    23KJ0507
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Refining neurophysiological biomarkers of epilepsy using deep learning to guide pediatric epilepsy surgery
利用深度学习完善癫痫的神经生理学生物标志物来指导小儿癫痫手术
  • 批准号:
    10664790
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Neurophysiological Social Reward Processing, Birth Trauma, and Depression Symptoms in the Peripartum Period
神经生理学社会奖赏处理、分娩创伤和围产期抑郁症状
  • 批准号:
    10824066
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了