HearTheSpecies: Using computer audition to understand the drivers of soundscape composition, and to predict parasitation rates based on vocalisations of bird species
HearTheSpecies:使用计算机试听来了解音景构成的驱动因素,并根据鸟类的发声来预测寄生率
基本信息
- 批准号:512414116
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Infrastructure Priority Programmes
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
HearTheSpecies is an interdisciplinary project of the Chair of Embedded Intelligence for Health Care and Wellbeing (EIHW) at the University of Augsburg and the Chair of Geobotany at the University of Freiburg (ALU-FR). The intensification of land use is one of the main causes of the current loss of biodiversity. In order to better understand and monitor the links between land use intensity and biodiversity loss, HearTheSpecies aims to harness the potential of a hitherto under-researched data pool: Audio. The impact of land use on the soundscape of a landscape manifests itself in different aspects and scales. Species loss of vocalising animal communities or changes in landscape structure and vegetation density alter the composition of biophony (sounds of wildlife), geophony (sounds of abiotic nature) and anthropophony (sounds caused by humans). On a much finer scale, land use can even affect the vocal characteristics of individual animals by influencing fitness and parasitisation rates. The established land use gradient within biodiversity exploratories provides an excellent research platform to investigate these relationships and thus establish AI-based autonomous acoustic monitoring workflows. Specifically, as part of HearTheSpecies, we aim to develop AI-based automatic diarisation and separation tools that enable coarse separation of biophony, anthropophony and geophony from interwoven soundscape recordings, and fine-grained detection and separation of species and specific abiotic sounds. To do this, we will annotate existing data from previous projects that collected audio recordings within the Biodiversity Exploratories to enable the training of AI algorithms, and collect new audio data in the joint multi-site experiments REX and FOX. In a next step, we will use these separated sounds to model the effects of local and regional land use intensity, landscape configuration and vegetation structure on the composition of the soundscape and individual species of the acoustic community, and predict parasitisation rates in birds based on their song characteristics.
HearTheSpecies是奥格斯堡大学嵌入式智能医疗保健和福祉(EIHW)主席和弗赖堡大学地理植物学主席的跨学科项目。土地使用的集约化是目前生物多样性丧失的主要原因之一。为了更好地了解和监测土地利用强度和生物多样性丧失之间的联系,HearTheSpecies旨在利用迄今为止研究不足的数据库的潜力:音频。土地利用对景观声景的影响表现在不同的方面和尺度上。发声动物群落的物种损失或景观结构和植被密度的变化改变了生物音(野生动物的声音),生物音(非生物性质的声音)和生物音(人类引起的声音)的组成。在更精细的尺度上,土地利用甚至可以通过影响适应度和寄生率来影响个体动物的声音特征。在生物多样性勘探站内建立的土地利用梯度提供了一个很好的研究平台,以调查这些关系,从而建立基于人工智能的自主声学监测工作流程。具体而言,作为HearTheSpecies的一部分,我们的目标是开发基于人工智能的自动diarisation和分离工具,使生物音,生物音和生物音从交织的音景记录中粗略分离,以及物种和特定非生物声音的细粒度检测和分离。为此,我们将对以前在生物多样性探索中心收集音频记录的项目中的现有数据进行注释,以支持人工智能算法的训练,并在雷克斯和FOX联合多地点实验中收集新的音频数据。在下一步中,我们将使用这些分离的声音来模拟当地和区域土地利用强度,景观配置和植被结构对声音景观和声学群落的个体物种组成的影响,并根据鸟类的歌声特征预测鸟类的寄生率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Michael Scherer-Lorenzen其他文献
Professor Dr. Michael Scherer-Lorenzen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Michael Scherer-Lorenzen', 18)}}的其他基金
Temporal dynamics of tree diversity effects on growth, mortality and biomass production (BIOTREE project)
树木多样性对生长、死亡率和生物量生产影响的时间动态(BIOTREE 项目)
- 批准号:
439223434 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grants
BEsound: the relationships between land use intensity, organismic diversity and acoustic complexity - adopting soundscape ecology in the Biodiversity Exploratories
BEsound:土地利用强度、生物多样性和声学复杂性之间的关系 - 在生物多样性探索中采用声景生态学
- 批准号:
252306891 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Infrastructure Priority Programmes
相似国自然基金
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
RII Track-4:@NASA: Automating Character Extraction for Taxonomic Species Descriptions Using Neural Networks, Transformer, and Computer Vision Signal Processing Architectures
RII Track-4:@NASA:使用神经网络、变压器和计算机视觉信号处理架构自动提取分类物种描述的字符
- 批准号:
2327168 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Using Flow-Based Music Programming to Engage Children in Computer Science
协作研究:使用基于流程的音乐编程让孩子们参与计算机科学
- 批准号:
2241714 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Helping Doctors Doctor: Using AI to Automate Documentation and "De-Autonomate" Health Care
帮助医生医生:使用人工智能实现文档自动化和医疗保健“去自动化”
- 批准号:
10701364 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A Mobile Health Application to Detect Absence Seizures using Hyperventilation and Eye-Movement Recordings
一款使用过度换气和眼动记录检测失神癫痫发作的移动健康应用程序
- 批准号:
10696649 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Non-invasive Condition Monitoring of Ventricular Assistive Devices Using Automated Advanced Acoustic Methods
使用自动化先进声学方法对心室辅助装置进行无创状态监测
- 批准号:
10629554 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Ultra-precision clinical imaging and detection of Alzheimers Disease using deep learning
使用深度学习进行超精密临床成像和阿尔茨海默病检测
- 批准号:
10643456 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Improving identification and healthcare for patients with Inherited Cancer Syndromes: Evidence-based EMR implementation using a web-based computer platform
改善遗传性癌症综合征患者的识别和医疗保健:使用基于网络的计算机平台实施基于证据的 EMR
- 批准号:
10831647 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Modeling the Responsiveness of Sensitive Populations to Genotoxic Agents Using DNA Repair Inhibitors
使用 DNA 修复抑制剂模拟敏感人群对基因毒性药物的反应性
- 批准号:
10734425 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
- 批准号:
10727356 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Determining the ototoxic potential of COVID-19 therapeutics using machine learning and in vivo approaches
使用机器学习和体内方法确定 COVID-19 疗法的耳毒性潜力
- 批准号:
10732745 - 财政年份:2023
- 资助金额:
-- - 项目类别: