Cooperative elastomeric multi-actuator platform (CALMAR)

协作弹性多执行器平台(CALMAR)

基本信息

项目摘要

Collaborative multi-actuator systems will be important components for visionary future applications, such as robotics, medical appliances and advanced user interfaces. The potential range of use of such devices spans from the nanoscale, where they operate at a scale where many phenomena have their origin, to the micro- and macroscale. Conceptually, they vary considerably across the size scales. The larger they become, the more the technical requirements approach human capabilities. They should be able to independently realise complex sequences of movements and tasks, perceive their environment, and act autonomously according to the situation. Appropriately powerful robotic multi-actuator sensor structures are among the significant, barely solved technical challenges, which are considerably amplified for small-scale systems by the functional, technological, and integrative constraints of the size limitation. Sensors with the necessary sensitivities, suitable actuators, hardware and software for controlling or regulating information processing, and strategies for assembly and system integration are required. For conventional rigid robots for instance, this inevitably leads to a significant increase in the complexity of hardware and software and a corresponding deterioration in the energy and sustainability balance, because even more information processing electronics, sensors and actuators are required. In this project we will develop interconnected, distributed HASEL-DET-DES actuator modules that requires advanced methods. The classical process of product development and optimization through several cycles of design, prototyping and metrological investigations is no longer suitable. We will develop alternative simulation-based design methods that realize a large part of the development and optimization by a virtual design. The design methodology is aided by underlying the model hierarchy describing the system virtually at different abstraction levels. Base units, consisting of HASEL, DET or DES, are synergistically combined to single-actuator modules, which themselves represent sub-modules for the cooperative elastomeric multi-actuator platform (CALMAR), with the freedom to ensure several functionalities as cooperative behavior, multilevel actuation, multistability and inherent sensing of internal and external stimuli. It is designed with the help of structural and behavioural models. The influence of each parameter on the system behaviour can then be efficiently simulated to optimize the system for a desired behaviour. A holistic multivariable control strategy will offer minimum control inputs for well-defined system behaviour. By using a model-based toolbox to be developed, the optimum configuration for the respective application can be compiled from the available HASEL-DES-DEA base units and basic functions. Finally, the intended cooperative multi-actuator platform will be realised by additive manufacturing and investigated in detail.
协作式多致动器系统将成为有远见的未来应用的重要组成部分,如机器人、医疗设备和高级用户界面。这种装置的潜在使用范围从纳米尺度到微观和宏观尺度,在纳米尺度上,它们在许多现象起源的尺度上运行。从概念上讲,它们在大小尺度上差别很大。它们越大,技术需求就越接近人类的能力。他们应该能够独立地实现复杂的动作和任务序列,感知他们的环境,并根据情况自主行动。适当强大的机器人多致动器传感器结构是重要的,几乎没有解决的技术挑战之一,对于小型系统来说,由于尺寸限制的功能,技术和综合约束,这些挑战大大放大了。需要具有必要灵敏度的传感器,合适的执行器,用于控制或调节信息处理的硬件和软件,以及装配和系统集成的策略。以传统的刚性机器人为例,这不可避免地导致硬件和软件复杂性的显著增加,以及能源和可持续性平衡的相应恶化,因为需要更多的信息处理电子设备、传感器和执行器。在这个项目中,我们将开发互连的分布式HASEL-DET-DES执行器模块,这需要先进的方法。经典的产品开发和优化过程,通过几个周期的设计,原型和计量调查不再适用。我们将开发替代的基于仿真的设计方法,通过虚拟设计实现大部分的开发和优化。通过在不同抽象层次上虚拟地描述系统的底层模型层次结构,可以帮助设计方法。由HASEL、DET或DES组成的基本单元协同组合成单致动器模块,这些模块本身代表了协同弹性多致动器平台(CALMAR)的子模块,可以自由地确保协同行为、多级致动、多稳定性和内部和外部刺激的固有感知等几个功能。它是在结构和行为模型的帮助下设计的。然后,可以有效地模拟每个参数对系统行为的影响,以优化系统的期望行为。整体多变量控制策略将为定义良好的系统行为提供最小的控制输入。通过使用要开发的基于模型的工具箱,可以从可用的HASEL-DES-DEA基本单元和基本功能中编译相应应用程序的最佳配置。最后,利用增材制造技术实现了多执行器协同平台,并对其进行了详细研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Jürgen Maas其他文献

Professor Dr.-Ing. Jürgen Maas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Jürgen Maas', 18)}}的其他基金

Development, analysis and application of an actuated variable tool electrode for die-sinking EDM - VariSink4EDM
用于开模 EDM 的驱动可变工具电极的开发、分析和应用 - VariSink4EDM
  • 批准号:
    426311818
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Basic research on the immersed tumbling process using magneto-rheological fluid for the specific cutting edge preparation of milling tools – RheoTumble
使用磁流变液进行沉浸式滚磨工艺的基础研究,用于铣削刀具的特定切削刃制备 – RheoTumble
  • 批准号:
    503335130
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

I-Corps: Translation Potential of an Elastomeric Low-Friction Fluoropolymer Alternative for the Medical Device Industry
I-Corps:医疗器械行业弹性体低摩擦含氟聚合物替代品的转化潜力
  • 批准号:
    2406968
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Regulation of Intraocular Pressure via a Novel Adjustable Glaucoma Drainage Device
通过新型可调节青光眼引流装置调节眼压
  • 批准号:
    10735637
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
2023 Liquid Crystals Gordon Research Conference & Gordon Research Seminar
2023年液晶戈登研究会议
  • 批准号:
    10683604
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Molecular mechanisms of load-induced t-tubule regulation in the mammalian heart
哺乳动物心脏负荷诱导 T 管调节的分子机制
  • 批准号:
    10664338
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Biodegradable Elastomers and Resorbable Synthetic Vascular Grafts
可生物降解的弹性体和可吸收的合成血管移植物
  • 批准号:
    10580321
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Improving Outcomes in Cataract Surgery: Intraocular Lenses (IOLs) Resistant to Cell Growth
改善白内障手术的效果:抗细胞生长的人工晶状体 (IOL)
  • 批准号:
    10841859
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Neural Recording and Simulation Tools to Address the Mesoscale Gap
解决中尺度差距的神经记录和模拟工具
  • 批准号:
    10739544
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Nanoporous semiconductor-enabled multi-site photostimulation for cardiac resynchronization therapy
用于心脏再同步治疗的纳米多孔半导体多部位光刺激
  • 批准号:
    10861527
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
肩関節脱臼予防に向けたElastomeric Shoulder Braceの研究
预防肩关节脱位的弹性肩托的研究
  • 批准号:
    23K10702
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Poly(pro-Estrogen) Microneedle Patches
聚(雌激素原)微针贴片
  • 批准号:
    10647375
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了