Chemically accurate predictions for the effect of water on the structure and reactivity of zeolite catalysts

从化学角度准确预测水对沸石催化剂结构和反应性的影响

基本信息

项目摘要

We aim at quantum chemical ab initio predictions for hydration and hydrolysis of acidic zeolite catalysts and on the effect of water on their reactivity in industrially relevant hydrocarbon synthesis and transformations reactions. If predictions can be made for ideal zeolite structures with bridging Si-O(H)-Al groups as active sites with chemical accuracy (±4 kJ/mol for energies) disagreement with experiment points to defects or other imperfections of the samples used. We focus on the presence of extra-framework aluminium oxo-hydroxo (EFAl) species which form under hydrothermal conditions during synthesis, post-synthesis dealumination or catalytic conversion. The currently dominating computational approach, density functional theory with an additional parameterized dispersion term (DFT-D), does not yield reliable results for the reactivity of zeolites and their interaction with water. Adsorption energies and the stability of protonated water clusters are overestimated, and energy barriers are too low. O–H bonds are too long, too weak and too much stretched when engaged in H bonds which results in much too large red-shifts of O–H stretching frequencies. Crucial for the success of this project is therefore the implementation of a hybrid QM:QM method (QM – quantum mechanics) which combines second order Møller-Plesset perturbation theory (MP2) and Coupled Cluster (CC) theory for the reaction/adsorption site with DFT-D for the full periodic structure and is applicable to realistic models (1,000 atoms). Previous implementations for hydrocarbon reactions in zeolites (hybrid MP2:DFT-D+ΔCC method) have been shown to yield chemically accurate results for elementary reaction and adsorption steps. With the implemented and tested methods, we will generate an extensive set of chemically accurate data as reference for the selection of computationally more efficient (DFT-D) methods that are needed for broader application. With reliable QM:QM structures for different types of surface OH groups in zeolite H-MFI, calculated O–H stretching frequencies and 1H-NMR chemical shifts will permit to assign “free” and H-bonded OH groups to different crystallographic positions or to EFAl species. We will be also able to reject or accept suggested EFAl structure models based on disagreement or agreement between predicted spectroscopic signatures and experiment. We will study the interaction of water with ideal zeolite structures as well as with hydrolysed Si-O-Al bridges and other EFAl models. Comparison will be made with observed isotherms and calorimetric data using a new multi-site adsorption model.
我们的目标是量子化学从头算预测酸性沸石催化剂的水合和水解,以及水对其在工业上相关的烃合成和转化反应中的反应活性的影响。如果能够以化学精度(能量为±4kJ/mol)预测以Si-O(H)-Al基团为活性中心的理想沸石结构,则与实验结果不符的是所用样品的缺陷或其他缺陷。我们关注的是在合成、合成后脱铝或催化转化过程中,在水热条件下形成的骨架外铝氧-羟基(Efal)物种的存在。目前占主导地位的计算方法,即附加参数化色散项的密度泛函理论(DFT-D),对于沸石的反应性及其与水的相互作用并不能产生可靠的结果。质子化水团簇的吸附能和稳定性被高估,能垒太低。当参与H键时,O-H键太长、太弱、太伸缩,导致O-H伸缩频率红移太大。因此,该项目成功的关键是实施了一种混合的QM:QM方法(QM-量子力学),该方法结合了反应/吸附位置的二阶M&Plesset微扰理论(MP2)和耦合团簇(CC)理论,以及全周期结构的DFT-D,适用于现实模型(1,000个原子)。以前的分子筛中烃类反应的实现(混合MP2:DFT-D+ΔCC方法)已经被证明为基本反应和吸附步骤产生了化学上准确的结果。通过实施和测试的方法,我们将生成一组广泛的化学准确数据,作为选择更有效的计算(DFT-D)方法的参考,这些方法是更广泛应用所需的。利用分子筛H-MFI中不同类型表面羟基的可靠的QM:QM结构,计算的O-H伸缩频率和1H-核磁共振化学位移将允许将“自由”和氢键的OH基团分配给不同的晶位或Efal物种。我们也将能够拒绝或接受基于预测的光谱特征和实验之间的不一致或一致的建议的EFAL结构模型。我们将研究水与理想沸石结构的相互作用,以及与水解的Si-O-Al桥和其他Efal模型的相互作用。用一个新的多点吸附模型与观察到的等温线和量热数据进行比较。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Joachim Sauer其他文献

Professor Dr. Joachim Sauer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Joachim Sauer', 18)}}的其他基金

Ab initio Free Energy Calculations with Chemical Accuracy for Molecule-Surface Interactions
具有化学精度的分子-表面相互作用从头算自由能计算
  • 批准号:
    279371351
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Reinhart Koselleck Projects
Ab initio simulation of isotherms for gas mixtures in metal-organic frameworks
金属有机骨架中气体混合物等温线的从头模拟
  • 批准号:
    246380922
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Redox-Active MOF-5 Isotypes: Novel Entatic State Catalysts?
氧化还原活性 MOF-5 同种型:新型熵状态催化剂?
  • 批准号:
    79582262
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Transition structures and rate constants for elementary reaction steps in zeolites
沸石中基本反应步骤的过渡结构和速率常数
  • 批准号:
    5406415
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Säure-Base katalysierte Alkanaktivierung
酸碱催化烷烃活化
  • 批准号:
    5253654
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Struktur, Dynamik und elektronische Wechselwirkungen verschiedener Gastsysteme mit Zeolithkäfigen
各种客体系统与沸石笼的结构、动力学和电子相互作用
  • 批准号:
    5234004
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
NSF-DFG Confine: Diffusion of Water Confined in Patterned Hydrophilic-Hydrophobic Nanopores
NSF-DFG 限制:图案化亲水-疏水纳米孔中限制的水的扩散
  • 批准号:
    509313931
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

非定常复杂流场的时空高精度高效率新格式的研究
  • 批准号:
    50376004
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Accurate predictions for the production of heavy particles at the Large Hadron Collider
准确预测大型强子对撞机重粒子的产生
  • 批准号:
    EP/X021416/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
  • 批准号:
    10727356
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Leveraging human genetics to overcome complex diagnostic challenges, evaluation of pan-ancestry polygenic scores to reduce misdiagnosis of narcolepsy and circadian rhythm sleep wake disorders.
利用人类遗传学克服复杂的诊断挑战,评估泛祖多基因评分以减少发作性睡病和昼夜节律睡眠觉醒障碍的误诊。
  • 批准号:
    10576448
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Diversity Supplement: Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
多样性补充:通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测(牙周)牙周问题 (RADMAP)
  • 批准号:
    10602003
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测牙周问题 (RADMAP)
  • 批准号:
    10285226
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Development of a system utilising AI and ML technology to create extremely accurate predictions of vehicle depreciation, valuations and data modelling scenarios for new, used and concept vehicles to support the automotive industry
开发利用人工智能和机器学习技术的系统,为新车、二手车和概念车创建极其准确的车辆折旧、估值和数据建模场景预测,以支持汽车行业
  • 批准号:
    87234
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
RAPID: ReCOVER: Accurate Predictions and Resource Allocation for COVID-19 Epidemic Response
RAPID:ReCOVER:COVID-19 流行病应对的准确预测和资源分配
  • 批准号:
    2027007
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Improvement of Modeling Predictions in Friction Stir Welding by More Accurate Measurement of Heat Transfer Between Tooling and Workpiece
通过更准确地测量工具和工件之间的传热来改进搅拌摩擦焊的建模预测
  • 批准号:
    1935767
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Towards Accurate Protein Structure Predictions with SAXS Technology (TAPESTRY)
利用 SAXS 技术 (TAPESTRY) 实现准确的蛋白质结构预测
  • 批准号:
    10171872
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
A connectivity approach to stochastically simulate physical distancing and to make more accurate predictions of its effectiveness to reduce the spread of the COVID-19 outbreak
一种连接方法,可随机模拟物理距离并更准确地预测其减少 COVID-19 爆发传播的有效性
  • 批准号:
    554430-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了