Bicontinuous aqueous two-phase systems based on GelMA and dextran for tailored porous hydrogels in 3D Tissue Engineering

基于 GelMA 和葡聚糖的双连续水性两相系统,用于 3D 组织工程中定制的多孔水凝胶

基本信息

项目摘要

In 3D tissue engineering, cells are embedded in cytocompatible hydrogels and processed by casting or bioprinting. Within the 3D structure, the post-processing cellular behavior is determined mainly by the hydrogels' microstructure. Conventional hydrogels are often limited in their tunability, in particular regarding their pore size and structure, and thus encapsulated cells are restricted in proliferation, spreading, migration, and differentiation. To address these shortcomings, we synthesize and investigate novel hydrogel blends based on an aqueous two-phase system (ATPS) consisting of gelatin methacryloyl (GelMA) and dextran. In proof-of-principle experiments, we synthesized homogeneous, regular disconnected-porous and bicontinuous interconnected-porous gels by finely tuning the phase separation mechanism and kinetics of the ATPS solution before ultraviolet (UV) light crosslinking of the GelMA phase and washing out the dextran phase. We showed in preliminary experiments that the hydrogels' pore characteristics were stable after printing. The bicontinuous ATPS hydrogel was suitable for growing several exemplary phenotypically different cell types: Human mesenchymal stem cells, periodontal ligament fibroblasts, and human neuroblastoma cancer cells all maintained optimal viability and expected morphology after seven days of cultivation. Thus, there is a great motivation and necessity to understand the underlying physico-chemical principles that determine the phase separation and structure formation processes in aqueous mixtures of polyampholytes and neutral polysaccharides finally leading to hydrogels with controlled microstructure. In addition, we will examine the effect of the 3D printing process, in particular the printing-induced shear stress on phase separation, the final hydrogel microstructure and their mechanical properties. The affinity of different cell types to grow in ATPS hydrogels will be investigated by evaluating their behavior in both cast and printed hydrogels with bicontinuous microstructure. Furthermore, we want to understand the partitioning of chemoattractants within ATPS solutions and gels. Finally, cell-laden ATPS solutions will be investigated concerning their phase separation mechanisms and the cellular response to both, (bio)printing and post-printing UV-crosslinking will be studied. The insights gained upon these investigations will allow understanding the dominating (macro)molecular interactions and enable the design of extracellular matrix-simulating 3D structures with high-level biomimicry holding the potential to open new opportunities and applications for tissue engineering and regenerative medicine.
在3D组织工程中,细胞被嵌入细胞相容性水凝胶中,并通过铸造或生物打印进行处理。在3D结构中,后处理细胞行为主要由水凝胶的微观结构决定。传统的水凝胶通常在可调性方面受到限制,特别是在其孔径和结构方面,因此包裹的细胞在增殖、扩散、迁移和分化方面受到限制。为了解决这些缺点,我们合成和研究新的水凝胶共混物的基础上的水两相系统(ATPS)由明胶甲基丙烯酰(GelMA)和葡聚糖。在原理验证实验中,我们通过微调在GelMA相的紫外(UV)光交联和洗出葡聚糖相之前ATPS溶液的相分离机制和动力学,合成了均匀的、规则的不连通多孔和双连续的互连多孔凝胶。我们在初步实验中表明,水凝胶的孔特性在印刷后是稳定的。双连续ATPS水凝胶适合于生长几种示例性的表型不同的细胞类型:人间充质干细胞、牙周韧带成纤维细胞和人神经母细胞瘤癌细胞在培养七天后都保持最佳的活力和预期的形态。因此,有很大的动机和必要性来了解决定聚两性电解质和中性多糖水性混合物中相分离和结构形成过程的基本物理化学原理,最终导致具有受控微观结构的水凝胶。此外,我们将研究3D打印过程的影响,特别是打印诱导的剪切应力对相分离,最终水凝胶微观结构及其机械性能的影响。不同细胞类型在ATPS水凝胶中生长的亲和力将通过评估它们在具有双连续微结构的浇铸和印刷水凝胶中的行为来研究。此外,我们想了解ATPS溶液和凝胶内的化学引诱物的分配。最后,将研究载有细胞的ATPS溶液的相分离机制,并研究细胞对(生物)打印和打印后UV交联的反应。在这些研究中获得的见解将使我们能够理解主要的(宏观)分子相互作用,并能够设计具有高水平仿生学的细胞外基质模拟3D结构,从而为组织工程和再生医学开辟新的机会和应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Horst Fischer其他文献

Professor Dr.-Ing. Horst Fischer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Horst Fischer', 18)}}的其他基金

Organo-chemical modification of titanium alloy and zirconia surfaces to achieve tight gingival adhesion (GingiSeal)
钛合金和氧化锆表面的有机化学改性以实现紧密的牙龈粘附(GingiSeal)
  • 批准号:
    418670251
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Influence of nanopatterend titanium surfaces on the osteogenic differentiation of human mesenchymal stem cells in combination with chemical and biological surface modifications (NanoTune)
纳米图案钛表面结合化学和生物表面修饰对人间充质干细胞成骨分化的影响(NanoTune)
  • 批准号:
    361028671
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Micro-scale geometrically and metallurgically adapted surface structures of implants for the defined stimulation of the osteogenic differentiation
微尺度几何和冶金适应的植入物表面结构,用于明确刺激成骨分化
  • 批准号:
    341161542
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Biofabrication of a prevascularized functional trachea substitute
预血管化功能性气管替代物的生物制造
  • 批准号:
    256933203
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Biomineralizing three-dimensional bioprinted hydrogels for bone tissue replacement using dedicated peptides in high local concentrations presented on biotechnologically modified plant virus nanoparticles (PlantVirusBone)
使用生物技术修饰的植物病毒纳米粒子(PlantVirusBone)上呈现的高局部浓度的专用肽,生物矿化三维生物打印水凝胶,用于骨组织替代
  • 批准号:
    403762164
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Multiscale and cell-preserving 3D bioprinting of human cells by nozzle-free acoustic droplet ejection (AcousticBioprinting)
通过无喷嘴声学液滴喷射对人体细胞进行多尺度和细胞保存 3D 生物打印 (AcousticBioprinting)
  • 批准号:
    423054768
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

NIH Plunk The Effects of Gestational and Lactational Exposure to Perfluorohexanoic Acid on Cerebellum Development in the Mouse
美国国立卫生研究院 (NIH) 确定妊娠期和哺乳期接触全氟己酸对小鼠小脑发育的影响
  • 批准号:
    10747709
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Aqueous two-phase system technology for biomarker isolation and next-generation non-invasive active surveillance of prostate cancer
用于生物标志物分离和下一代前列腺癌非侵入性主动监测的水两相系统技术
  • 批准号:
    478181
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Microfluidic aqueous two phase system for extracellular vesicle sorting
用于细胞外囊泡分选的微流体水性两相系统
  • 批准号:
    574474-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
A study of organoid formation on a floating culture using an aqueous two-phase system
使用水性两相系统在漂浮培养物上形成类器官的研究
  • 批准号:
    22K12790
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Building a two-way communication system: Bio-orthogonal superhydrophobic nanoparticles for controlled stimulation and real-time sensing of neurotransmitters
构建双向通信系统:生物正交超疏水纳米颗粒用于神经递质的受控刺激和实时传感
  • 批准号:
    10473375
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Reconstructing the microbe-host interface in an advanced bioprinted co-culture system to study microbial community contributions to chemotherapy-induced oral mucositis
在先进的生物打印共培养系统中重建微生物-宿主界面,以研究微生物群落对化疗引起的口腔粘膜炎的贡献
  • 批准号:
    461756
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Construction of Aqueous Polymeric Microphase Separation Two Phase Systems
水性聚合物微相分离两相体系的构建
  • 批准号:
    22H02147
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Dearomatization of Planar Aromatic Cores into Three-Dimensional Scaffolds with Defined Stereochemistry
平面芳香核脱芳构化成具有明确立体化学的三维支架
  • 批准号:
    10464808
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Dearomatization of Planar Aromatic Cores into Three-Dimensional Scaffolds with Defined Stereochemistry
平面芳香核脱芳构化成具有明确立体化学的三维支架
  • 批准号:
    10700834
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Development of a polymicrobial-mammalian co-culture platform using aqueous two-phase systems
使用水性两相系统开发多微生物-哺乳动物共培养平台
  • 批准号:
    564633-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了