Development of a Greybox Model for the Prediction of the Performance of PVD Coated Carbide Tools

开发用于预测 PVD ​​涂层硬质合金刀具性能的灰盒模型

基本信息

项目摘要

According to the current state of the art, the real, complex application behaviour of PVD-coated tools can neither be measured satisfactorily nor described sufficiently in models. In order to be able to conduct a knowledge-based qualification of these tools, it is necessary to gain knowledge about the start of failure, the progress of wear and the remaining tool life. In particular, discontinuous coating failure cannot be modelled due to a lack of knowledge of the fundamental relationships. In addition, both the coating properties and the thermomechanical loads applied change with increasing operating time as a result of wear. The proposed research project addresses the dynamic relationship between variable coating properties on the one hand and the variable process-related loads on the other hand for external longitudinal turning of the alloys C45N and 42CrMo4+QT. It is known from the state of the art that the coating properties have a significant influence on the application behaviour of the tools. It is also known that both the coating properties and the thermomechanical load stresses change significantly due to tool wear. Taking into account the varying properties and loads allows for a more accurate prediction of the performance of the cutting tools and helps to build up fundamental understanding to design and select tools in a load-specific way. For this purpose, the tools are extensively characterised at the beginning of the research project with regard to coating and interface properties between the coating and the carbide substrate. This is followed by the development of a detailed data basis for the subsequent modelling. With the help of a new method based on investigations on a planing test rig in combination with microkinematography, it is possible for the first time to map the load stresses acting on the cutting edge as tool wear progresses. Together with the thermal load, which also changes over time, these load stresses serve as input variables for an FEM model for mapping critical stresses in the cutting wedge that promote coating failure. The predictive capability and accuracy of this whitebox model is extended by the use of artificial intelligence methods. Since it is difficult to map the changed coating properties on the basis of physical relationships and use them for such a prediction, data-driven approaches based on high-resolution analyses of the coating properties and residual stresses are employed. By observing the relationship between stresses and coating properties, it is possible to predict the further behaviour of the tools and gain new insights into the underlying mechanisms.
根据现有技术,PVD涂覆的工具的真实的、复杂的应用行为既不能令人满意地测量,也不能在模型中充分描述。为了能够对这些工具进行基于知识的鉴定,有必要获得有关故障开始、磨损进展和剩余工具寿命的知识。特别是,不连续的涂层故障不能建模,由于缺乏知识的基本关系。此外,由于磨损,涂层性能和所施加的热机械载荷都随着操作时间的增加而变化。拟议的研究项目解决了一方面的可变涂层性能和另一方面的可变过程相关的负载之间的动态关系,用于合金C45 N和42CrMo4+QT的外部纵向车削。从现有技术已知,涂层性质对工具的应用行为具有显著影响。还已知的是,涂层性质和热机械载荷应力由于工具磨损而显著改变。考虑到不同的属性和负载,可以更准确地预测切削刀具的性能,并有助于建立基本的理解,以负载特定的方式设计和选择刀具。为此,在研究项目开始时,刀具就涂层和涂层与碳化物基体之间的界面特性进行了广泛的表征。然后为随后的建模工作建立详细的数据基础。借助一种基于刨削试验台研究的新方法,结合显微运动学,可以首次绘制出刀具磨损过程中作用在切削刃上的载荷应力。这些载荷应力与随时间变化的热载荷一起作为FEM模型的输入变量,用于绘制切削楔中促进涂层失效的临界应力。通过使用人工智能方法,该白盒模型的预测能力和准确性得到了扩展。由于很难根据物理关系绘制变化的涂层特性并将其用于此类预测,因此采用基于涂层特性和残余应力的高分辨率分析的数据驱动方法。通过观察应力和涂层性能之间的关系,可以预测工具的进一步行为,并获得对潜在机制的新见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Berend Denkena其他文献

Professor Dr.-Ing. Berend Denkena的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Berend Denkena', 18)}}的其他基金

Evaluation and adaptation of machining processes for the compensation of thermal and mechanical machining influences
评估和调整加工工艺以补偿热加工和机械加工影响
  • 批准号:
    429702029
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants (Transfer Project)
Multi-criteria personnel scheduling considering the robustness of production systems
考虑生产系统稳健性的多准则人员调度
  • 批准号:
    423805508
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Grinding behavior of sintered metal diamond grinding wheels with chemically bonded abrasive grains
化学结合磨粒烧结金属金刚石砂轮的磨削行为
  • 批准号:
    426703057
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Productivity increase in tool grinding with the help of a "sensing" spindle
借助“传感”主轴提高刀具磨削的生产率
  • 批准号:
    417859800
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants (Transfer Project)
Correlation of the process signals during grinding and the resulting workpiece quality
磨削过程中的过程信号与最终工件质量的相关性
  • 批准号:
    421461390
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Self-optimizing decentralized production control
自优化分散生产控制
  • 批准号:
    426187351
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Hard milling of micro dimples for friction and wear reduction in highly stressed bearing contacts
对微凹坑进行硬铣削,以减少高应力轴承接触中的摩擦和磨损
  • 批准号:
    407531729
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Effects of Detectable Defects (EDD) – Influence of production related defects in automated fiber placement processes in thin walled carbon fiber structures
可检测缺陷 (EDD) 的影响 â 薄壁碳纤维结构自动纤维铺放过程中生产相关缺陷的影响
  • 批准号:
    413627151
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Autonomous calculation of stability lobe diagrams, based on sensory structural compo-nents of a milling center
基于铣削中心的传感结构组件自主计算稳定性波瓣图
  • 批准号:
    416001186
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Surface generation during milling considering the tool micro geometry
铣削过程中考虑刀具微观几何形状的表面生成
  • 批准号:
    392316211
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Compiling Chemistry Databases for Greybox AI
为 Greybox AI 编译化学数据库
  • 批准号:
    551851-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
SHF: Small: Greybox Computing: An Associative Computing Methodology with Instruction Directed Power and Clock Management
SHF:小型:灰盒计算:具有指令导向电源和时钟管理的关联计算方法
  • 批准号:
    1618065
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SPP 2402: Greybox Models for the Qualification of Coated Tools for High-Performance Machining
SPP 2402:用于高性能加工涂层刀具资格的灰盒模型
  • 批准号:
    499723700
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Extrapolative digital greybox models for describing and predicting the macroscopic system behavior of TiAlN-coated cutting tools
用于描述和预测 TiAlN 涂层切削刀具宏观系统行为的外推数字灰箱模型
  • 批准号:
    521385417
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Development of a Greybox model for wear prognosis of PVD coated carbide tools during high performance turning of steels
开发用于钢高性能车削过程中 PVD ​​涂层硬质合金刀具磨损预测的灰盒模型
  • 批准号:
    521280523
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Greybox-modeling the run-in behavior of coated tools in the milling process as dynamic load profile based on operando, in situ and ex situ analyses
基于操作、原位和非原位分析,灰盒将铣削过程中涂层刀具的磨合行为建模为动态载荷曲线
  • 批准号:
    521382051
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Greybox models for in-situ quantification of probabilistic tool life of CVD coated cemented carbide gear hobs
用于现场量化 CVD 涂层硬质合金齿轮滚刀概率刀具寿命的灰盒模型
  • 批准号:
    521375603
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Greybox model-based prediction of wear evolution of coated tools through experimental and model-driven identification of relevant loads
通过实验和模型驱动的相关载荷识别,基于灰盒模型预测涂层刀具的磨损演变
  • 批准号:
    521377466
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Development of a greybox model to predict tool wear of PVD coatings for finish turning - GreyProPVD
开发灰盒模型来预测精车 PVD ​​涂层的刀具磨损 - GreyProPVD
  • 批准号:
    521383048
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了