Model-based in-process determination of the tool wear at high performance turning
基于模型的高性能车削刀具磨损过程测定
基本信息
- 批准号:521384759
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Despite the variety of coated carbide tools in use, the understanding of tool wear underlying mechanisms still shows considerable deficits. In this project, a (whitebox) model based on chip formation simulations is to be combined with an artificial neural network (ANN, blackbox model) to form a greybox model in order to develop a significantly improved understanding of the wear formation and development of coated carbide tools for high-performance turning. The whitebox model is intended to enable an approximate determination of current tool wear parameters on the basis of the measured thermo-mechanical load spectrum. The estimated wear will then be used together with in-process measurement data as input for a trained black box model to precisely predict tool wear. In particular, the information on the wear condition of the tool contained in structure-borne noise signals, Barkhausen noise amplitudes, workpiece dimensions and surface roughness will be taken into account, in addition to the information contained in the thermo-mechanical load spectrum. With this research approach, the priority program should succeed in mapping and identifying previously unknown mechanisms of coating degradation and tool wear and thus contribute to an improved knowledge-based qualification of tool coatings for high-performance cutting. The whitebox model is developed on the basis of an existing finite element chip formation model. The valid embedding of the coating properties and the inverse model usage are clarified. The blackbox model is realized by means of an artificial neural network. Its training requires a fast direct detection of the tool wear, so that two measurement procedures based on optical principles are realized and used, which enable a precise in-situ determination of the tool geometry and the coating thickness. For the black box model, the structure of an artificial neural network and the sensor data are investigated to enable wear determination with minimal uncertainty. In order to minimize the number of inputs of the blackbox model, it is clarified how a signal preprocessing of the in-process collected data with negligible information loss can be realized. The resulting greybox model is developed and validated for external longitudinal turning of quenched and tempered 42CrMo4. In addition, an extended validation on the cross-section material of the priority program C45 is planned. In the second phase of the priority program, the greybox model is to be extended for the prediction of wear development as well as for a broader application range of actuating and system variables.
尽管使用的涂层硬质合金刀具种类繁多,但对刀具磨损潜在机制的理解仍然显示出相当大的缺陷。在本项目中,基于切屑形成模拟的(白盒)模型将与人工神经网络(ANN,黑盒模型)相结合,形成灰盒模型,以显著提高对高性能车削涂层硬质合金刀具磨损形成和开发的理解。白盒模型旨在根据测量的热-机械负荷谱近似确定当前工具磨损参数。然后,估计的磨损将与过程中的测量数据一起作为训练后的黑匣子模型的输入,以精确预测工具磨损。特别是,除了热-机械载荷谱中包含的信息外,还将考虑结构噪声信号、巴克豪森噪声幅值、工件尺寸和表面粗糙度中包含的刀具磨损状况信息。通过这种研究方法,优先计划应该成功地绘制和识别以前未知的涂层降解和刀具磨损机制,从而有助于改进基于知识的高性能切削刀具涂层资格。白盒模型是在现有的有限元切屑形成模型的基础上发展起来的。阐明了涂层性能的有效嵌入和逆模型的用法。黑盒模型采用人工神经网络实现。它的训练需要快速直接检测刀具磨损,从而实现和使用基于光学原理的两种测量程序,从而能够精确地确定刀具几何形状和涂层厚度。对于黑箱模型,研究了人工神经网络的结构和传感器数据,以便以最小的不确定性确定磨损。为了最大限度地减少黑箱模型的输入数量,阐明了如何对进程中采集的数据进行信号预处理,使信息损失可以忽略不计。建立了灰盒模型,并对调质42CrMo4的外纵向车削进行了验证。此外,还计划对优先方案C45的截面材料进行扩展验证。在优先计划的第二阶段,灰盒模型将被扩展到磨损发展的预测以及更广泛的驱动和系统变量的应用范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Andreas Fischer其他文献
Professor Dr.-Ing. Andreas Fischer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Andreas Fischer', 18)}}的其他基金
Near process flow measurements of the cooling lubricant supply in grinding processes
磨削过程中冷却润滑剂供应的近过程流量测量
- 批准号:
415003387 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Contactless in-process measurement of separated flow on non-scaled rotor blades of wind turbines
对风力涡轮机无刻度转子叶片上的分离流进行非接触式过程测量
- 批准号:
420278089 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Multi-sensor geometry measurement on large-scaled gears
大型齿轮的多传感器几何测量
- 批准号:
387963343 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
- 批准号:12305290
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
- 批准号:82371110
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
- 批准号:82003509
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Developmental Model to Understand the Process of Instructor Implementation of Evidence-Based Teaching Practices
理解教师实施循证教学实践过程的发展模型
- 批准号:
2235966 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Recurrent Circuit Model of Neural Response Dynamics in V1
V1 中神经反应动力学的循环电路模型
- 批准号:
10710967 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Spatialomics and quantitative MRI of ischemic injury in a piglet model of Legg-Calve-Perthes disease
Legg-Calve-Perthes 病仔猪模型缺血性损伤的空间组学和定量 MRI
- 批准号:
10806492 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Adapting and Implementing a Nurse Care Management Model to Care for Rural Patients with Chronic Pain
适应和实施护理管理模式来护理农村慢性疼痛患者
- 批准号:
10741606 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Predictive multi-scale model of focal adhesion-based durotaxis
基于粘着斑的 durotaxis 的预测多尺度模型
- 批准号:
10798520 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Promoting Retention in Opioid Treatment among Women Experiencing Intimate Partner Violence: A Novel Stepped Care Model Targeting PTSD
促进经历亲密伴侣暴力的女性保留阿片类药物治疗:一种针对 PTSD 的新型阶梯式护理模式
- 批准号:
10812139 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Contribution of non-canonical dopamine pathways to model-based learning
非典型多巴胺通路对基于模型的学习的贡献
- 批准号:
10607923 - 财政年份:2023
- 资助金额:
-- - 项目类别:
An integrated community-clinic model of optimized implementation strategies to increase early detection of breast and cervical cancers in Kenya
优化实施策略的综合社区诊所模型,以提高肯尼亚乳腺癌和宫颈癌的早期发现率
- 批准号:
10876524 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A Developmental Model to Understand the Process of Instructor Implementation of Evidence-Based Teaching Practices
理解教师实施循证教学实践过程的发展模型
- 批准号:
2235830 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant