Multi-sensor geometry measurement on large-scaled gears

大型齿轮的多传感器几何测量

基本信息

项目摘要

New dimensional measuring systems are essential to keep pace with the raised requirements concerning production tolerances. The needed dynamic range of the measurement system is steadily increasing for applications of large volume metrology. For large-scaled gears, for instance, the tolerances increase with increasing diameter and module, but the ratio of needed measurement uncertainty and measuring volume decreases. Relating to the diameter, the required measurement uncertainty for assessing the total profile deviation of a large-scaled gear has to be one order of magnitude less than for a small gear. Furthermore, coordinate measuring machines and gear measuring instruments quickly reach their limits when measuring large-scaled gears. They are designed for a serial data acquisition and provide only a limited measuring volume. Thus, these devices are slow and hardly scalable. Current measuring systems for large volume metrology are either designed for serial data acquisition to some extent or do not provide the required measurement uncertainty.The intended project addresses the challenges of the dimensional measurement of large objects concerning the dynamic range and the scalability of the measuring system as well as the logistic effort and measurement time. The objective is to introduce a measuring system for the dimensional measurement of large objects using the example of large-scaled gears by combining a consequent model-based approach with a multi-sensor setup of optical distance sensors. Due to its modular architecture, the multi-sensor system can be easily adapted to the required measuring volume. Therefore, it is well suited for the measurement of large objects or as an in-situ measuring system. The capability of simultaneously acquiring multiple points on the object's surface by means of fast sensors reduces the measuring time.The focus of this project lies on the model-based evaluation of a form parameter of the actual gear geometry (base diameter) and on an optimal design of the multi-sensor system, based on a measurement uncertainty analysis. As a result, for a measuring object with a diameter of 2 m, an uncertainty of the form parameter < 5 µm should be reached. The required dynamic range of the individual distance sensors is also a subject of the research, as increasing the measuring range typically goes along with an increased measurement uncertainty. Thus, it should be clarified whether the location of the measuring zone could be quickly tracked with adaptive optic components without increasing the measurement uncertainty. The characterized multi-sensor system, which is based on optic sensors, will be validated by means of an existing large coordinate measuring machine. Moreover, it will be analyzed for the first time, whether and how both the measuring system and the model-based evaluation can be extended to more complex geometries.
为了跟上对生产公差的更高要求,新的尺寸测量系统至关重要。随着大容量计量的应用,测量系统所需的动态范围正在稳步增加。以大型齿轮为例,其公差随直径和模数的增大而增大,但所需测量不确定度与测量体积之比减小。与直径有关,评定大型齿轮的总齿形偏差所需的测量不确定度必须比小齿轮小一个数量级。此外,坐标测量机和齿轮测量仪器在测量大型齿轮时很快就达到了极限。它们专为串行数据采集而设计,仅提供有限的测量量。因此,这些设备速度很慢,而且很难扩展。目前的大体积计量测量系统要么设计成在某种程度上支持串行数据采集,要么不能提供所需的测量不确定度。计划的项目解决了大型物体尺寸测量的挑战,涉及测量系统的动态范围和可扩展性,以及后勤工作和测量时间。目的是以大型齿轮为例,将基于模型的测量方法与光学距离传感器的多传感器设置相结合,介绍一个用于大型物体尺寸测量的测量系统。由于其模块化结构,多传感器系统可以很容易地适应所需的测量体积。因此,它非常适合于大型物体的测量或作为现场测量系统。利用快速传感器同时获取物体表面多个点的能力减少了测量时间,本项目的重点在于基于模型的实际齿轮几何形状参数(基径)的评估和基于测量不确定度分析的多传感器系统的优化设计。因此,对于直径为2米的测量对象,形状参数的不确定度应达到5微米。单个距离传感器所需的动态范围也是研究的主题,因为增加测量范围通常会伴随着测量不确定度的增加。因此,应该明确的是,是否可以在不增加测量不确定度的情况下,利用自适应光学元件快速跟踪测量区的位置。基于光学传感器的特征多传感器系统将在现有的大型坐标测量机上进行验证。此外,还将首次分析测量系统和基于模型的评估是否以及如何扩展到更复杂的几何形状。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gear Shape Parameter Measurement Using a Model-Based Scanning Multi-Distance Measurement Approach
  • DOI:
    10.3390/s20143910
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Pillarz, Marc;von Freyberg, Axel;Fischer, Andreas
  • 通讯作者:
    Fischer, Andreas
Determination of the mean base circle radius of gears by optical multi-distance measurements
  • DOI:
    10.5194/jsss-9-273-2020
  • 发表时间:
    2020-08-20
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Pillarz, Marc;von Freyberg, Axel;Fischer, Andreas
  • 通讯作者:
    Fischer, Andreas
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Andreas Fischer其他文献

Professor Dr.-Ing. Andreas Fischer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Andreas Fischer', 18)}}的其他基金

Near process flow measurements of the cooling lubricant supply in grinding processes
磨削过程中冷却润滑剂供应的近过程流量测量
  • 批准号:
    415003387
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Contactless in-process measurement of separated flow on non-scaled rotor blades of wind turbines
对风力涡轮机无刻度转子叶片上的分离流进行非接触式过程测量
  • 批准号:
    420278089
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Model-based in-process determination of the tool wear at high performance turning
基于模型的高性能车削刀具磨损过程测定
  • 批准号:
    521384759
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

NOD1棕榈酰化修饰通过炎症信号调控胰岛素抵抗的分子机制
  • 批准号:
    32000529
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于隐半马尔科夫模型的无线传感器网络入侵检测系统研究
  • 批准号:
    61101083
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于非接触测量的超高温MEMS压力传感器基础研究
  • 批准号:
    51075375
  • 批准年份:
    2010
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目
人类NADPH sensor蛋白HSCARG调控机制研究
  • 批准号:
    30930020
  • 批准年份:
    2009
  • 资助金额:
    170.0 万元
  • 项目类别:
    重点项目
基于sensor agent的营养液组分动态测量与建模研究
  • 批准号:
    60775014
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Multimodal Label-Free Nanosensor for Single Virus Characterization and Content Analysis
用于单一病毒表征和内容分析的多模式无标记纳米传感器
  • 批准号:
    10641529
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A Dry Electrode for Universal Accessibility to EEG
用于普遍获取脑电图的干电极
  • 批准号:
    10761609
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
High density chronic optogenetic interface for primate brains
灵长类大脑的高密度慢性光遗传学接口
  • 批准号:
    10706899
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Pre-clinical validation of 3D-printed nerve conduits for pediatric peripheral nerve repair
3D 打印神经导管用于儿科周围神经修复的临床前验证
  • 批准号:
    10672031
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of Quantum Magnetic Tunneling Junction Sensor Arrays for Brain Magnetoencephalography (MEG) under Natural Settings
自然环境下脑磁图 (MEG) 量子磁隧道结传感器阵列的开发
  • 批准号:
    10723802
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A Novel Framework for Sensitive and Reliable Early Diagnosis, Topographic Mapping, and Stiffness Classification of Colorectal Cancer Polyps
一种用于结直肠癌息肉敏感且可靠的早期诊断、地形测绘和硬度分类的新框架
  • 批准号:
    10742476
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Dysregulated mechanosignaling in dilated cardiomyopathy caused by defective Filamin C
Filamin C 缺陷引起的扩张型心肌病的机械信号失调
  • 批准号:
    10877387
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Longitudinal Biomechanics and Patient-Reported Outcomes after Periacetabular Osteotomy for Developmental Dysplasia of the Hip
髋臼周围截骨术治疗髋关节发育不良后的纵向生物力学和患者报告的结果
  • 批准号:
    10561427
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The X-VISUAL (X-ray Visualized Indicator for Screw-strain Under Applied Load)
X-VISUAL(施加负载下螺钉应变的 X 射线可视化指示器)
  • 批准号:
    10822470
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Unveiling Functional Roles of Apical Surface Interactions Between Opposing Cell Layers
揭示相对细胞层之间顶端表面相互作用的功能作用
  • 批准号:
    10629101
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了