Cluster Transfer Matrix Method and Quantum Statistical Mechanics of Spin Systems

自旋系统的簇传递矩阵方法与量子统计力学

基本信息

  • 批准号:
    61540253
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1986
  • 资助国家:
    日本
  • 起止时间:
    1986 至 1987
  • 项目状态:
    已结题

项目摘要

1. The main part of this project is to develope a method on the basis of the Suzuki-Trotter formula, by which we can compute the quantum effect on thermodynamics of one-dimensional spin systems down to very low temperature t K_BT/2JS^2-0.1. We have observed that the correlation among spins, which is produced by the nearest neighbour exchange coupling -2J in the present case, grows up long distance with decreasing t, so that the size of decomposition for applying the Suzuki-Trotter formula should be set to be as large as the correlation length at temperature down to which one want to compute the thermodynamics. This idea has lead us the cluster transfer matrix method. An analytical application to S = 1/2 XY model has shown a good improvement of numerical computation even in the case of 3 spin cluster plus Trotter number M = 6, on comparing the results with exact ones. For S = 1/2 Heisenberg model we have obtained satisfactory results of susceptibility and specific heat down to t - 0.1 in the ferromagnetic case by taking 4 spin cluster plus M = 6, but not so satisfactory results in teh antiferromagnetic case. We have to enlarge both the size of cluster and M in the latter case.2. We have presented an analytic formula of computing the tunnelling splitting in some kinds of quantum spin system without going to the semiclassical limit. The splitting of energy levels is the characteristic frequency of quantum coherence to be seen in spin systems under consideration.3. An extensive review of statistical mechanics of soliton bearing systems has been presented. This review has been intended to be available as an introductory course to the present field of physics.
1.本项目的主要内容是在铃木-特罗特公式的基础上发展一种方法,通过该方法我们可以计算一维自旋系统的量子热力学效应,直到非常低的温度t K_BT/2 JS ^[2 -0.1]。我们已经观察到,自旋之间的相关性,这是由最近邻交换耦合-2J在目前的情况下,随着t的减小,增长了很长的距离,因此,应用铃木-特罗特公式的分解的大小应该设置为与相关长度一样大的温度下,人们想要计算热力学。这一思想导致了我们的集群转移矩阵法。对S = 1/2XY模型的分析表明,即使在3自旋集团加Trotter数M = 6的情况下,数值计算结果与精确计算结果相比也有很大的改进。对于S = 1/2的海森堡模型,取4自旋团簇加M = 6,在铁磁情况下得到了磁化率和比热的满意结果,直到t - 0.1,而在反铁磁情况下则不太满意.在后一种情况下,我们必须同时增大簇的大小和M.本文给出了计算几类量子自旋系统的隧穿劈裂的解析公式,而不必进入半经典极限。能级的分裂是自旋系统在双光子作用下量子相干的特征频率.本文对孤立子轴承系统的统计力学作了广泛的评述。这篇评论旨在作为目前物理学领域的入门课程。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Tszuuki: Progress of Theoretical Physics. 75. 225-242 (1986)
T.Tszuuki:理论物理学的进展。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Toshio,TSUZUKI: Progress of Theoretical Physics. 76. 52-66 (1986)
都筑敏夫:理论物理学进展。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Tsuzuki: Proceeding of the Workshop on Magnetic Excitations and Fluctuations【II】. (1987)
T.Tsuzuki:磁激励和涨落研讨会论文集【II】(1987)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Toshio TSUZUKI: "An Improved Transfer Matrix Method for Quantum Spin Systems" Progress of Theoretical Physics. 73. 1352-1368 (1985)
Toshio TSUZUKI:“量子自旋系统的改进传递矩阵方法”理论物理进展。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Toshio TSUZUKI: "On a Symmetric (2S+1)-State System Coupled to Its Environment: Tunniling Splitting and Quantum Coherence" Proceeding of the Workshop on Magnetic Excitations and Fluctuations II (Torino, Italy, 1987). 65-69 (1987)
Toshio TSUZUKI:“论与其环境耦合的对称 (2S 1) 态系统:隧道分裂和量子相干性”磁激发和涨落 II 研讨会论文集(意大利都灵,1987 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TSUZUKI Toshio其他文献

TSUZUKI Toshio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TSUZUKI Toshio', 18)}}的其他基金

The Role of Reaction Field on the Dynamics of a Spin-Boson System
反应场对自旋玻色子系统动力学的作用
  • 批准号:
    06640495
  • 财政年份:
    1994
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonadiabatic Effect and Dynamic Compensation in a Spin-Boson System
自旋玻色子系统中的非绝热效应和动态补偿
  • 批准号:
    02640269
  • 财政年份:
    1990
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Dynamic Theory of the Influence of Environment on the Macroscopic Quantum Phenomena
环境对宏观量子现象影响的动力学理论
  • 批准号:
    63540269
  • 财政年份:
    1988
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Development of heavy water enrichment device by quantum effect using two dimensional thin film
利用二维薄膜量子效应开发重水浓缩装置
  • 批准号:
    23K17965
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Developing Machine Learning Potential to Unravel Quantum Effect on Ionic Hydration and Transport in Nanoscale Confinement
开发机器学习潜力来揭示纳米尺度限制中离子水合和传输的量子效应
  • 批准号:
    2154996
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
The Fundamentals of Engineered Surface Metrology based on Quantum Effect of Photon Scattering
基于光子散射量子效应的工程表面计量学基础
  • 批准号:
    21K18159
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Creation of nanowhisker growth technology for improvement of energy material performance by quantum effect
创建纳米晶须生长技术,通过量子效应改善能源材料性能
  • 批准号:
    19K22154
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Analysis of the superluminal modes by gravitational quantum effect
利用引力量子效应分析超光速模式
  • 批准号:
    17K14281
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of accurate high-resistance measurement system using quantum effect
利用量子效应开发精确的高电阻测量系统
  • 批准号:
    16K17537
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Nanowire quantum effect devices for field effect single-molecule DNA sequencing
用于场效应单分子 DNA 测序的纳米线量子效应装置
  • 批准号:
    1606141
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Development of production technologies for large-area and a few nanometer-thick organic single-crystalline insulating layer toward realizing quantum effect device
大面积、几纳米厚有机单晶绝缘层生产技术开发,实现量子效应器件
  • 批准号:
    16K13661
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Development of ultra-cold neutron detectors with spatial resolution of several ten nanometers for the measurement of quantum effect of ultra-cold neutrons in the earth's gravitational field
研制数十纳米空间分辨率的超冷中子探测器,用于测量地球引力场中超冷中子的量子效应
  • 批准号:
    26800132
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Adiabatic approximation violation on electronic structure due to quantum effect of hydrogen
由于氢的量子效应对电子结构的绝热近似破坏
  • 批准号:
    25620009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了