ON THE DEVELOPMENT OF NUMERICAL ANALYSIS METHOD OF WAVE DEFORMATION AND BREAKING WAVE ON BEACH

浅谈海滩波浪变形与破碎波数值分析方法的发展

基本信息

  • 批准号:
    62550380
  • 负责人:
  • 金额:
    $ 1.34万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1987
  • 资助国家:
    日本
  • 起止时间:
    1987 至 1988
  • 项目状态:
    已结题

项目摘要

THIS RESEARCH HAS TAKEN THE DEFORMATION PROCESS OF BREAKING WAVE IN RELATION TO INNER MECHANISM ON THE SLOPE AND IS THE PURPOSE OF ESTABLISHMENT OF NUMERICAL METHOD FORMED A PART OF PHENOMENON FROM DEFORMATION TO BREAKING WAVE.1. THEORETICAL RESEARCH (1). IT IS PRESENTED THE NUMERICAL ANALYSIS MODEL IN CONNECTION WITH STUDY THE BREAKING WAVE ON THE SLOPE AND MAKES A CLEAR THE ANALYSIS METHOD BY FINITE ELEMENT.WE ESTIMATE THE ENERGY DISPERSION OF BREAKING WAVE WITH REYNOLDS STRESS OF PRANDTL TYPE,IN ADDITION WEWE TAKE A METHOD IN CONTINUTY EQUATION INCLUDED AN AIT PRESSURE THAT THE BREAKING WAVE COMES WITH AN CONTINUOUS AIR BUBBLE.IN COM-PARISON WITH EXPERIMENT,WE KNOWN A GOOD CALCULATIVE AGREEMENT THAT THE WAVE HEIGHT CORRESPONDS TO SLOPE GRADIENT AND STEEPNESS. (2) WE APPLIED A SMAC METHOD FOR MORE EXACT CALCULATION THROUGH BREAKING WAVE PHENOMENON,BECAUSE THERE IS A NONLINEAR AND UNSTANDING WAVE.WE MODIFIED SMAC METHOD,SO THE PRESENT SMAC METHOD CAN CAL-CULATE A DISTURB MECHANISM AFT … More ER BREAKING WAVE.THIS CALCULATION SYSTEM USE A F.E.M RESULT DEVELOPED BY AUTHOR.THE CALCULATED RESULT GOOD AGREE WITH AN EXPERIMENTAL RESULT,WE DID A QUANTITATIVE CALCUL-ATION ABOUT BREAKING WAVE AND VOTEX. (3). WE DEVELOPED THE METHOD TO ANALYZE DIRECT F.E.M FOR CONTROL EQUATION OF TURBULENT FLOW ON BASE OF MIXTURE LENGTH THEORY TO PROBLEM OF THE WAVE BOUNDARY LAYER,WHICH EVALUATED QUANTITATIVELY THE EFFECT OF WAVE FINITE AMPLITUDE AND INERTIA TRANSFER TERM.NEXT,WE DEVELOPED F.E.M METHOD TO INTRODU-CE ENERGY DISPERSION AN OBJECT OF VOTEX EQUATION.THIS METHOD USED A CALCULATION THE TURBULENT BOUND-ARY LAYER ON THE RIPPLED SAND BEDS,WHICH CALCULATED THE PROPERTY OF DISTURB MECHANISM,THERE IS A GOOD AGREE BETWEEN NUMERICAL METHOD RESULT AND EXPERIMENTAL RESULT.2. EXPERIMENTAL RESEARCH WE DID EXPERIMENT AN OBJECT OF BREAKING WAVE DEFORMATION PROCESS ON THE SLOPE. WE TAKE A VIDEO,EST-ALISH A PORTRAIT ANALYSIS SYSTEM,ANALYZE A INNER QUANTITY AND GET A COMPARATIVE DATA IN COMPARISON TO NUMERICAL ANALYSIS.WE INVESIGATE BREAKING WAVE DEFORMATION IN RELATION TO TRANSITION OF ALL QUAN-TITY. Less
本研究将破波的变形过程与斜坡上的内在机制联系起来,是建立从变形到破波现象的数值方法的一部分.理论研究(1).本文提出了研究斜坡上破碎波的数值分析模型,明确了有限元分析方法,用Prandtl型雷诺应力估算了破碎波的能量弥散,并采用了连续性方程中包含有破碎波随连续气泡产生的顶压的方法,与实验结果进行了比较。我们知道波高与坡度和陡度的对应关系是一个很好的计算协议。(2)由于波浪是非线性的,不稳定的,为了更精确地计算破波现象,我们采用了SMAC方法,并对SMAC方法作了改进,使SMAC方法能计算波浪后的扰动机制 ...更多信息 呃破碎波。本计算系统使用作者开发的有限元结果。计算结果与实验结果一致,我们对破碎波和波浪进行了定量计算。(三)、本文将基于混合长度理论的紊流控制方程的直接有限元分析方法推广到波浪边界层问题,定量地说明了波浪有限振幅和惯性传递项的影响,并将能量色散引入到VOTEX方程的一个问题中,该方法用于计算波浪起伏沙床上的紊流边界层,计算了扰动机制的性质,数值计算结果与实验结果吻合较好.实验研究我们在斜坡上做了一个破碎波变形过程的实验。我们拍摄了一段视频,建立了一个图像分析系统,对一个内量进行了分析,得到了与数值分析相比较的数据,研究了破碎波变形与各量变化的关系。少

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
KIYOSHI TAKIKAWA: "ON THE BREAKING WAVE DEFORMATION PROPERTY BY VIDEO PORTRAIT ANALYSIS." PROC. ANNU. CONF. WESTERN BRANCH OF JSCE. 140-141 (1989.3)
KIYOSHI TAKIKAWA:“通过视频肖像分析研究破碎波变形特性。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
滝川清: 昭和63年度土木学会西部支部研究発表会講演概要集. 140-141 (1989)
Kiyoshi Takikawa:1986 年日本土木工程师学会西部分会研究会议演讲摘要集 140-141 (1989)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
滝川清: 昭和62年度土木学会西部研究発表会講演概要集. 112-113 (1988)
Kiyoshi Takikawa:1988 年日本土木工程师学会西方研究报告摘要 112-113 (1988)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
滝川清: 昭和62年度 土木学会西部支部研究発表会講演概要集. 142-143 (1988)
Kiyoshi Takikawa:1988 年日本土木工程师学会西部分会研究报告摘要 142-143 (1988)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
KIYOSHI TAKIKAWA: "THE NUMERICAL ANALYSIS METHOD OF BREAKING WAVE PROPERTY ON THE SLOPE." PROC. ANNU. CONF. WESTERN BRANCH OF JSCE. 140-141 (1988.3)
KIYOSHI TAKIKAWA:“斜坡上碎波特性的数值分析方法。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKIKAWA Kiyoshi其他文献

TAKIKAWA Kiyoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKIKAWA Kiyoshi', 18)}}的其他基金

Recovery and Preservation technologies for the Environment of Tidal-Flat in the Ariake Sea
有明海滩涂环境恢复与保护技术
  • 批准号:
    14208072
  • 财政年份:
    2002
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Hazard Mapping for Storm Surge and Factorial Analysis of Environmental Variables over Ariake and Yatsusiro -Sea
有明海和八代海风暴潮灾害测绘和环境变量因子分析
  • 批准号:
    13358005
  • 财政年份:
    2001
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Assessment of natural environment and maintenance of infrastructure for co-existence with environment in Ariake and Yatsusiro Coastal region
有明和八代沿海地区的自然环境评估和与环境共存的基础设施维护
  • 批准号:
    10308026
  • 财政年份:
    1998
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Environmental Impact due to the Effects of River Inflow Load in the Estuaries of Ariake Sea
有明海河口入水负荷影响的环境影响
  • 批准号:
    08458164
  • 财政年份:
    1996
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
DEVELOPMENT OF NUMERICAL ANALYSIS METHOD AND INTERNAL MECHANISM OF BREAKING WAVE ON ARBITRARY BOUNDARY SHAPE CONDITION
任意边界形状条件下破碎波数值分析方法及内部机理的研究
  • 批准号:
    03650428
  • 财政年份:
    1991
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Development of a Hybrid Stochastic Finite Element Method with Enhanced Versatility for Uncertainty Quantification
开发一种增强通用性的混合随机有限元方法,用于不确定性量化
  • 批准号:
    23K04012
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evaluation of component-based finite element method in connection design
连接设计中基于组件的有限元方法的评估
  • 批准号:
    573136-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.34万
  • 项目类别:
    University Undergraduate Student Research Awards
Real-time finite element method for interactive design
交互式设计的实时有限元方法
  • 批准号:
    2795756
  • 财政年份:
    2022
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Studentship
Influence line analysis suitable for finite element method: toward improving efficiency of structural design
适用于有限元法的影响线分析:提高结构设计效率
  • 批准号:
    22K04278
  • 财政年份:
    2022
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The High-Order Shifted Boundary Method: A Finite Element Method for Complex Geometries without Boundary-Fitted Grids
高阶移位边界法:一种用于无边界拟合网格的复杂几何形状的有限元方法
  • 批准号:
    2207164
  • 财政年份:
    2022
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Continuing Grant
A Novel Finite Element Method Toolbox for Interface Phenomena in Plasmonic Structures
用于等离子体结构界面现象的新型有限元方法工具箱
  • 批准号:
    2009366
  • 财政年份:
    2020
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Standard Grant
A Fitted Finite Element Method for the Modeling of Complex Materials
复杂材料建模的拟合有限元方法
  • 批准号:
    2012285
  • 财政年份:
    2020
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Continuing Grant
Analysis of mechanical effect of Hotz plate on maxillary growth in cleft children using finite element method
Hotz钢板对唇裂儿童上颌骨生长力学效应的有限元分析
  • 批准号:
    20K10160
  • 财政年份:
    2020
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Long-term structural performance assessment of corroded reinforced concrete structures using an integrated approach of probabilistic and finite element method
使用概率和有限元方法综合方法评估腐蚀钢筋混凝土结构的长期结构性能
  • 批准号:
    19K15078
  • 财政年份:
    2019
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A vorticity preserving finite element method for the compressible Euler equations on unstructured grids
非结构网格上可压缩欧拉方程的保涡有限元法
  • 批准号:
    429491391
  • 财政年份:
    2019
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了