Cooperative Researches on Real Analysis and Functional Analysis
实分析与泛函分析的合作研究
基本信息
- 批准号:01302004
- 负责人:
- 金额:$ 8.96万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Co-operative Research (A)
- 财政年份:1989
- 资助国家:日本
- 起止时间:1989 至 1990
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. In the area of real analysis, various results pertaining to harmonic analysis on Euclidean domains were obtained. Among others, a theory of H^P space was developed in detail. A new development of Harmonic analysis was established. The latter was deeply related to differential geometry, partial differential equations and stochastic processes.2. In the area of applications of function spaces, new aspects of quantum information theory were obtained and applied to irreversible processes. Matrix inequalities in multiport network connections were studied. Various results in the field of evolution equations were obtained and applied to partial differential equations.3. In the area of representation theory and harmonic analysis, remarkable results were obtained. Discontinuous group in a homogeneous space of reductive type was studied. A construction of infinite-dimensional Lie groups was realized. Invariance of dimension of solutions to homogeneous characteristi cequations on semisimple Lie groups was clarified.4. In the area of functional analysis and partial differential equations, evolution equations, pseudo-differential operators, nonlinear parabolic equations, inverse eigenvalue problems, evolution equations in Hilbert spaces, hyperfunctions and Schrodinger equations were successfully developed.5. In the area of operator algebras and function algebras, the theory of unbounded derivations in C^*-algebras was developed and applied to statistical mechanics. Structure of operator algebras, quantum groups, structure of unbounded operator algebras, and function algebras were analyzed in detail.
1.在实分析领域,获得了欧几里德域上调和分析的各种结果。其中,详细发展了 H^P 空间理论。建立了谐波分析的新发展。后者与微分几何、偏微分方程和随机过程密切相关。 2.在函数空间的应用领域,获得了量子信息论的新方面并将其应用于不可逆过程。研究了多端口网络连接中的矩阵不等式。得到了演化方程领域的各种成果,并将其应用于偏微分方程中。 3.在表示论和调和分析领域取得了显著成果。研究了还原型齐次空间中的不连续群。实现了无限维李群的构造。阐明了半单李群上齐次特征方程解的维数不变性。 4.在泛函分析和偏微分方程领域,成功发展了演化方程、伪微分算子、非线性抛物型方程、反特征值问题、希尔伯特空间演化方程、超函数和薛定谔方程等。 5.在算子代数和函数代数领域,C^*-代数的无界导数理论得到发展并应用于统计力学。详细分析了算子代数的结构、量子群、无界算子代数的结构、函数代数。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.Miyachi: "H^p spaces over open subsets of R^n." Studia Math.95. 205-228 (1990)
A.Miyachi:“R^n 的开子集上的 H^p 空间。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Ito: "On blowーup of positive solutions of semilinear parabolic equations." J.Fai.Sci.Univ.Tokyo,Sect.lA.37. 527-536 (1990)
S.Ito:“半线性抛物方程正解的放大。”J.Fai.Sci.Univ.Tokyo,Sect.lA.37 (1990)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A. Inoue: "Strongly cyclic vectors for partial O^*_-algebras" Math, Nachr.45-54 (1990)
A. Inoue:“部分 O^*_-代数的强循环向量” Math,Nachr.45-54 (1990)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Miyachi: "Hardy-Sobolev space and maximal functions" J.Math.Soc.Japan. 42. 73-90 (1990)
A.Miyachi:“Hardy-Sobolev 空间和极大函数”J.Math.Soc.Japan。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Ohya: "Some aspects of quantum information theory and their applications to irreversible processes" Rep.on Math.Phys.27. 19-47 (1989)
M.Ohya:“量子信息论的某些方面及其在不可逆过程中的应用”Rep.on Math.Phys.27。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAKATA Hiroshi其他文献
SAKATA Hiroshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SAKATA Hiroshi', 18)}}的其他基金
Development and privatization of Alternative Dispute Resolutions
替代性争议解决方案的发展和私有化
- 批准号:
15K03189 - 财政年份:2015
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reform of Japanese Civil Procedural Law
日本民事诉讼法的改革
- 批准号:
24530080 - 财政年份:2012
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Notice of Civil Ligation and Burden to Participate.
民事诉讼通知和参与负担。
- 批准号:
21530071 - 财政年份:2009
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The problems about the method for performing action paulienne by civil execution
民事执行保利恩诉讼的执行方法问题
- 批准号:
19530064 - 财政年份:2007
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effects of acorn production of Fagaceae species on status of wildlife in Hyogo Prefecture, Japan
日本兵库县壳斗科物种橡子生产对野生动物状况的影响
- 批准号:
18500783 - 财政年份:2006
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on a development of a retinal lattice degeneration
视网膜格子变性发展的研究
- 批准号:
03807117 - 财政年份:1991
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
A New Approach and Development to Singular Integrals in Noncommutative Harmonic Analysis - Fusion of Real Analysis and Representation Theory
非交换调和分析中奇异积分的新方法和发展——实分析与表示论的融合
- 批准号:
20K03638 - 财政年份:2020
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Real analysis via sparse domination
通过稀疏支配进行真实分析
- 批准号:
19K03538 - 财政年份:2019
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Summer Symposium in Real Analysis XLIII
实分析夏季研讨会XLIII
- 批准号:
1856209 - 财政年份:2019
- 资助金额:
$ 8.96万 - 项目类别:
Standard Grant
Developing and Validating Proof Comprehension Tests in Real Analysis
在实际分析中开发和验证证明理解测试
- 批准号:
1821553 - 财政年份:2018
- 资助金额:
$ 8.96万 - 项目类别:
Standard Grant
Summer Symposium in Real Analysis XLI
实分析夏季研讨会 XLI
- 批准号:
1700356 - 财政年份:2017
- 资助金额:
$ 8.96万 - 项目类别:
Standard Grant
Study of martingale spaces and martingale inequalities in view of real analysis
从实分析角度研究鞅空间和鞅不等式
- 批准号:
16K05203 - 财政年份:2016
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Harmonic Analysis by the methods of real analysis
通过实分析方法进行谐波分析
- 批准号:
16H03943 - 财政年份:2016
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Construction of multi-dimensional singular integral theory in non-commutative harmonic analysis - A new method combining real analysis and representation theory
非交换调和分析中多维奇异积分理论的构建——实分析与表示论相结合的新方法
- 批准号:
16K05211 - 财政年份:2016
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Upgrading Learning for Teachers in Real Analysis
协作研究:在真实分析中提升教师的学习水平
- 批准号:
1524681 - 财政年份:2015
- 资助金额:
$ 8.96万 - 项目类别:
Standard Grant
Collaborative Research: Upgrading Learning for Teachers in Real Analysis
协作研究:在真实分析中提升教师的学习水平
- 批准号:
1524619 - 财政年份:2015
- 资助金额:
$ 8.96万 - 项目类别:
Standard Grant














{{item.name}}会员




