Functional Analysis in Mathematical Sciences
数学科学中的泛函分析
基本信息
- 批准号:01540155
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1989
- 资助国家:日本
- 起止时间:1989 至 1990
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
During the last ten years, the field of mathematics has been rapidly developed to various branches. In particular, the effect of the applications of mathematics to the field of information sciences are remarkable. These are actually an important extension of mathematics, and are called to be mathematical sciences or mathematical information sciences. In this research, making the most use of the functional analysis method, we have aimed at further new branches. In the following we describe them by the items (1)-(5).(1) Development of Fourier analysis by functional analysis. Several fundamental theorems of operator algebras are adapted to constructions of Gelfand representation and Fourier transforms. Under these constructions, all fundamental theorems in harmonic analysis are expressed.(2) Applying the results in (1) to Radon transforms, we developed mathematical analysis of CT-Scanner, which is one of the most important principle in new medical diagnosis.(3) A fundamental method in signal analysis is sampling expansion theorem, where the main tool is sampling function. We have developed the functional analysis around the mathematical treatments. The formulations were done by von Neumann algebras and spectral theory. By these invesligations, the mathematical theory of signal has been clarified.While, we have adapted Shannon theory of entropy to optical communication theory, analysis of genes, quantum fractal theory and several topics, and discussed the usefulness of entropy. We describe the following results :(4) By using the functional analytic methods for the mutual entropy and the construction of quantum channel, we discussed the efficiency of some modulations and the error probability in optical communication processes.(5) We made the phylogenetic tree by using the techniques of information theory, and discussed the evolution of organisms.
在过去的十年中,数学领域迅速发展成各个分支。特别是,数学在信息科学领域的应用效果是显著的。这些实际上是数学的重要延伸,被称为数学科学或数学信息科学。在本研究中,充分利用泛函分析方法,进一步开拓新的分支。在下文中,我们用(1)-(5)项来描述它们。(1)通过泛函分析发展傅里叶分析。算子代数的几个基本定理适用于Gelfand表示和傅里叶变换的构造。在这些结构下,给出了谐波分析中的所有基本定理。(2)将(1)的结果应用于Radon变换,建立了ct扫描仪的数学分析,这是新医学诊断的重要原理之一。(3)信号分析的基本方法是采样展开定理,其主要工具是采样函数。我们围绕数学处理发展了泛函分析。这些公式是由冯·诺伊曼代数和谱理论完成的。通过这些研究,明确了信号的数学理论。同时,我们将香农熵理论应用于光通信理论、基因分析、量子分形理论等多个领域,并讨论了熵的有用性。(4)利用互熵的泛函分析方法和量子信道的构造,讨论了光通信过程中某些调制的效率和误差概率。(5)运用信息论的方法构建了系统发生树,讨论了生物的进化过程。
项目成果
期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Masanori Ohya: "Some aspects of quantum information theory and their applications to irreversible processes." Rep. Math. Phys.27. 19-47 (1989)
Masanori Ohya:“量子信息论的某些方面及其在不可逆过程中的应用。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Noboru Watanabe: "Efficiency of optical modulations with coherent state," Springer Lecture Note in Math.
Noboru Watanabe:“相干态光学调制的效率”,施普林格数学讲义。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
梅垣 壽春・中村 八東(編 著 書): "Proceedings of the 12th Symposium on Appliced Functional Analysis," 信州大学, (106)
Toshiharu Umegaki 和 Yato Nakamura(编辑和作者):“第 12 届应用函数分析研讨会论文集”,信州大学,(106)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
大矢 雅則: "量子制御通信過程における誤り確率の最適化," 電子情報通信学会論文誌. J73ーBI. 200-207 (1990)
Masanori Oya:“量子控制通信过程中的错误概率优化”,《电子、信息和通信工程师学会汇刊》J73-BI 200-207 (1990)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hisaharu Umegaki: "Spectral representation of momentum operator by sampling functions," Proceedings of the 12th Symposium on Applied Functional Analysis, - Information Theory and Related Topics -, Held in Shinshu University,. 33-43 (1990)
Hisaharu Umegaki:“通过采样函数对动量算子进行频谱表示”,第 12 届应用泛函分析研讨会论文集,信息论及相关主题,在信州大学举行。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UMEGAKI Hisaharu其他文献
UMEGAKI Hisaharu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UMEGAKI Hisaharu', 18)}}的其他基金
information Theory under the Method of Functional Analysis
泛函分析方法下的信息论
- 批准号:
03640185 - 财政年份:1991
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Functional Analytic Study for Mathematical Information Sciences
数学信息科学的泛函分析研究
- 批准号:
62540135 - 财政年份:1987
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
2D and 3D Transmission Compton Scattering Imaging solved by Generalized Radon Transforms
通过广义氡变换解决 2D 和 3D 传输康普顿散射成像
- 批准号:
290054006 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Research Grants
Conical Radon transforms and their applications in tomography
圆锥氡变换及其在层析成像中的应用
- 批准号:
1616564 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Microlocal analysis of topological Radon transforms and their applications to singularity theory
拓扑Radon变换的微局域分析及其在奇点理论中的应用
- 批准号:
15K17564 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Radon transforms: geometric combinatorics, regularity, and applications
Radon 变换:几何组合、正则性和应用
- 批准号:
1361697 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Continuing Grant
Radon transforms: geometric combinatorics, regularity, and extensions
Radon 变换:几何组合、正则性和扩展
- 批准号:
1101393 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Elliptical Radon Transforms in Image Reconstruction
图像重建中的椭圆氡变换
- 批准号:
1109417 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Microlocal analysis of topological Radon transforms and their application to singularity thoery
拓扑Radon变换的微局域分析及其在奇点理论中的应用
- 批准号:
23740134 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Radon transforms: geometric combinatorics, regularity, and extensions
Radon 变换:几何组合、正则性和扩展
- 批准号:
0850791 - 财政年份:2008
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Radon transforms on homogeneous spaces and their application to harmonic analysis
齐次空间上的 Radon 变换及其在调和分析中的应用
- 批准号:
19540208 - 财政年份:2007
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Radon transforms: geometric combinatorics, regularity, and extensions
Radon 变换:几何组合、正则性和扩展
- 批准号:
0653755 - 财政年份:2007
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant














{{item.name}}会员




