Radon transforms: geometric combinatorics, regularity, and extensions
Radon 变换:几何组合、正则性和扩展
基本信息
- 批准号:1101393
- 负责人:
- 金额:$ 13.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-15 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to address a series of interesting open problems in mathematical analysis relating to geometric integral transforms (like the Radon and X-ray transforms) and oscillatory integrals. Some of the goals include determining the boundedness of certain multilinear functionals (nonlinear analogues of the Holder-Brascamp-Lieb inequalities) on products of Lebesgue spaces and understanding of the regularity of averaging operators (in both the standard and overdetermined cases) on Lebesgue and Lebesgue square integrable Sobolev spaces. These problems and related generalizations are deeply connected to some of the most important conjectures in modern mathematics, including the Kakeya conjecture, the Bochner-Riesz conjecture, the Restriction conjecture, and Sogge's local smoothing conjecture. The intellectual merit of these problems to be studied here is that their solutions require fundamental new insights and hold the promise of being potentially significant steps on the road to the resolution of some of these deep conjectures.The broader impacts of the work in this project may be felt throughout medical imaging: CT and SPECT scans, NMR imaging, RADAR, and SONAR applications all depend on a deep theoretical and practical understanding of the Radon transform. Optical-acoustic tomography, scattering theory, and even motion-detection algorithms also depend on the Radon transform. More exciting and unexpected impacts are also anticipated in connection with the Boltzmann equation - a 140-year-old equation describing the dynamics of a dilute gas. Recent joint work with R. M. Strain has uncovered deep connections between this fundamental equation of statistical mechanics and the geometry and analysis connected to this project. These connections and the ideas and constructions arising from this new insight promise to have a deep and lasting impact on the way that this equation is understood by mathematicians.
这个项目的目标是解决一系列有趣的数学分析中的开放问题,涉及几何积分变换(如Radon和X射线变换)和振荡积分。 一些目标包括确定某些多线性泛函(Holder-Brascamp-Lieb不等式的非线性类似物)在勒贝格空间的乘积上的有界性,以及理解勒贝格和勒贝格平方可积Sobolev空间上的平均算子(在标准和超定情况下)的正则性。 这些问题和相关的推广与现代数学中一些最重要的猜想有着深刻的联系,包括Kakeya猜想,Bochner-Riesz猜想,限制猜想和Sogge的局部平滑猜想。 这些问题的智力价值在这里要研究的是,他们的解决方案需要基本的新见解,并持有的承诺,是潜在的重要步骤的道路上的决议,其中一些深刻的缺陷。更广泛的影响,在这个项目的工作可能会感觉到整个医学成像:CT和SPECT扫描,NMR成像,雷达和声纳应用都依赖于对Radon变换的深刻理论和实践理解。光声层析成像,散射理论,甚至运动检测算法也依赖于Radon变换。 更令人兴奋和意想不到的影响也预计与玻尔兹曼方程-一个140岁的方程描述了稀释气体的动力学。 最近与R. M.应变揭示了统计力学的基本方程与几何和分析之间的深层联系。 这些联系以及由此产生的思想和结构将对数学家理解这个方程的方式产生深远的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Gressman其他文献
Philip Gressman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Gressman', 18)}}的其他基金
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
- 批准号:
2348384 - 财政年份:2024
- 资助金额:
$ 13.21万 - 项目类别:
Standard Grant
Geometric Harmonic Analysis: Affine and Frobenius-Hörmander Geometry
几何调和分析:仿射几何和 Frobenius-Hörmander 几何
- 批准号:
2054602 - 财政年份:2021
- 资助金额:
$ 13.21万 - 项目类别:
Standard Grant
Geometric Harmonic Analysis: Affine and Frobenius-Hormander Geometry for Multilinear Operators
几何调和分析:多线性算子的仿射和 Frobenius-Hormander 几何
- 批准号:
1764143 - 财政年份:2018
- 资助金额:
$ 13.21万 - 项目类别:
Standard Grant
Conference in Harmonic Analysis at the International Centre for Mathematical Sciences (ICMS)
国际数学科学中心 (ICMS) 调和分析会议
- 批准号:
1700938 - 财政年份:2017
- 资助金额:
$ 13.21万 - 项目类别:
Standard Grant
Radon transforms: geometric combinatorics, regularity, and applications
Radon 变换:几何组合、正则性和应用
- 批准号:
1361697 - 财政年份:2014
- 资助金额:
$ 13.21万 - 项目类别:
Continuing Grant
Radon transforms: geometric combinatorics, regularity, and extensions
Radon 变换:几何组合、正则性和扩展
- 批准号:
0850791 - 财政年份:2008
- 资助金额:
$ 13.21万 - 项目类别:
Standard Grant
Radon transforms: geometric combinatorics, regularity, and extensions
Radon 变换:几何组合、正则性和扩展
- 批准号:
0653755 - 财政年份:2007
- 资助金额:
$ 13.21万 - 项目类别:
Standard Grant
相似国自然基金
全纯Mobius变换及其在相对论和信号分析中的应用
- 批准号:11071230
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
分形上的分析及其应用
- 批准号:10471150
- 批准年份:2004
- 资助金额:15.0 万元
- 项目类别:面上项目
相似海外基金
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
- 批准号:
2348384 - 财政年份:2024
- 资助金额:
$ 13.21万 - 项目类别:
Standard Grant
EnamExcel: Iteratively develop the world's first varnish that regenerates and regrows human enamel and transforms global oral health.
EnamExcel:迭代开发世界上第一个能够再生和再生人类牙釉质并改变全球口腔健康的清漆。
- 批准号:
10094179 - 财政年份:2024
- 资助金额:
$ 13.21万 - 项目类别:
Collaborative R&D
PLEIADS: Application of an Innovative Know-Your-Customer Digital Platform Which Transforms the KYC Ecosystem by Allowing Clients to Process Data Themselves and Mutualising Client On-Boarding Across Organisations.
PLEIADS:创新的“了解您的客户”数字平台的应用,该平台允许客户自行处理数据并实现跨组织的客户加入,从而改变 KYC 生态系统。
- 批准号:
10057410 - 财政年份:2023
- 资助金额:
$ 13.21万 - 项目类别:
Collaborative R&D
Indigenous mathematical transforms
本土数学变换
- 批准号:
IN230100053 - 财政年份:2023
- 资助金额:
$ 13.21万 - 项目类别:
Discovery Indigenous
Quantum computing with differentiable quantum transforms
具有可微量子变换的量子计算
- 批准号:
576833-2022 - 财政年份:2022
- 资助金额:
$ 13.21万 - 项目类别:
Alliance Grants
A development of raw image coding with generalized spectral-spatial transforms
广义谱空间变换原始图像编码的发展
- 批准号:
22K04084 - 财政年份:2022
- 资助金额:
$ 13.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integral transforms and moduli theory
积分变换和模理论
- 批准号:
FT210100405 - 财政年份:2022
- 资助金额:
$ 13.21万 - 项目类别:
ARC Future Fellowships
Precise operator norm estimates for diverse collections of maximal directional Hilbert transforms
最大方向希尔伯特变换的不同集合的精确算子范数估计
- 批准号:
566582-2021 - 财政年份:2022
- 资助金额:
$ 13.21万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Non-Canonical Integral Transforms for Multistatic Synthetic Aperture Radar (SAR) and Video SAR (VSAR) for Target Motion
用于目标运动的多基地合成孔径雷达 (SAR) 和视频 SAR (VSAR) 的非规范积分变换
- 批准号:
2905381 - 财政年份:2022
- 资助金额:
$ 13.21万 - 项目类别:
Studentship
Solving functional equations and inverting transforms that arise in the study of Markov models
求解马尔可夫模型研究中出现的函数方程和反变换
- 批准号:
562478-2021 - 财政年份:2021
- 资助金额:
$ 13.21万 - 项目类别:
University Undergraduate Student Research Awards