Radon transforms: geometric combinatorics, regularity, and applications

Radon 变换:几何组合、正则性和应用

基本信息

  • 批准号:
    1361697
  • 负责人:
  • 金额:
    $ 36.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-06-01 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

The goal of this project is to address a series of interesting open questions in the mathematical field of relating to what are known as geometric integral transforms (like the Radon and X-ray transforms) and oscillatory integrals. Stronger theoretical understanding of these and related objects is necessary, for they have many applications in science, engineering, and technological innovation. Imaging problems from medicine, including CT, SPECT, and NMR, as well as RADAR and SONAR applications, all depend on a deep understanding of the Radon transform. Optical-acoustic tomography, scattering theory, and even motion-detection algorithms also rely heavily on the mathematics that will be further developed as a part of this project. In addition, a major component of this project will involve contributions to mathematical education and training of graduate students at the grant institution. These students will take the knowledge and skills developed as a part of this project with them into the workforce to further advance the state of the art.The project has two major technical objectives. The first is to develop geometric and combinatorial methods useful for proving uniform estimates for a class of linear and multilinear operators generalizing Radon-like transforms, sublevel set operators, and oscillatory integral operators. The approaches to be developed trace their roots to work of Bourgain, Wolf, Christ, and many other mathematicians. The problems to be studied here and related generalizations are connected to some of the most important conjectures in modern mathematical analysis, including the Kakeya conjecture, the Bochner-Riesz conjecture, the Restriction conjecture, and Sogge's local smoothing conjecture. The second major objective is the application of these ideas and results to important open questions in the field of partial differential equations. Such applications have already made significant contributions to the study of the Boltzmann equation and the Gross-Pitaevskii hierarchy, and during this project, such work will be continued and expanded to include new mathematical understandings of the scattering theory of the Ablowitz-Kaup-Newell-Segur hierarchy and oscillatory Riemann-Hilbert problems. Each of these problems can benefit greatly from the tools to be developed in this project, which will replace traditional Fourier methods with more robust, geometric tools and ideas.
该项目的目标是解决数学领域中一系列有趣的开放性问题,这些问题与几何积分变换(如Radon和X射线变换)和振荡积分有关。 对这些和相关对象有更强的理论理解是必要的,因为它们在科学、工程和技术创新中有许多应用。医学成像问题,包括CT、SPECT和NMR,以及雷达和声纳应用,都依赖于对Radon变换的深入理解。光声层析成像,散射理论,甚至运动检测算法也在很大程度上依赖于数学,将进一步发展作为该项目的一部分。此外,该项目的一个主要组成部分将涉及对数学教育的贡献和赠款机构研究生的培训。这些学生将把作为本项目的一部分开发的知识和技能与他们进入劳动力,以进一步推进最先进的国家。该项目有两个主要的技术目标。首先是开发几何和组合的方法,用于证明统一估计的一类线性和多线性算子推广Radon样变换,子水平集算子,振荡积分算子。 这些方法可以追溯到布尔甘、沃尔夫、基督和许多其他数学家的工作。这里要研究的问题和相关的推广都与现代数学分析中的一些最重要的猜想有关,包括Kakeya猜想、Bochner-Riesz猜想、限制猜想和Sogge的局部平滑猜想。 第二个主要目标是应用这些想法和结果的重要公开问题领域的偏微分方程。这些应用已经对玻尔兹曼方程和Gross-Pitaevskii族的研究做出了重大贡献,在本项目中,这些工作将继续进行并扩大到包括对Ablowitz-Kaup-Newell-Segur族散射理论和振荡Riemann-Hilbert问题的新的数学理解。这些问题中的每一个都可以从这个项目中开发的工具中受益匪浅,这些工具将用更强大的几何工具和想法取代传统的傅立叶方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Gressman其他文献

Philip Gressman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip Gressman', 18)}}的其他基金

Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
  • 批准号:
    2348384
  • 财政年份:
    2024
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Standard Grant
Geometric Harmonic Analysis: Affine and Frobenius-Hörmander Geometry
几何调和分析:仿射几何和 Frobenius-Hörmander 几何
  • 批准号:
    2054602
  • 财政年份:
    2021
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Standard Grant
Geometric Harmonic Analysis: Affine and Frobenius-Hormander Geometry for Multilinear Operators
几何调和分析:多线性算子的仿射和 Frobenius-Hormander 几何
  • 批准号:
    1764143
  • 财政年份:
    2018
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Standard Grant
Conference in Harmonic Analysis at the International Centre for Mathematical Sciences (ICMS)
国际数学科学中心 (ICMS) 调和分析会议
  • 批准号:
    1700938
  • 财政年份:
    2017
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Standard Grant
Radon transforms: geometric combinatorics, regularity, and extensions
Radon 变换:几何组合、正则性和扩展
  • 批准号:
    1101393
  • 财政年份:
    2011
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Standard Grant
Radon transforms: geometric combinatorics, regularity, and extensions
Radon 变换:几何组合、正则性和扩展
  • 批准号:
    0850791
  • 财政年份:
    2008
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Standard Grant
Radon transforms: geometric combinatorics, regularity, and extensions
Radon 变换:几何组合、正则性和扩展
  • 批准号:
    0653755
  • 财政年份:
    2007
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Standard Grant

相似国自然基金

全纯Mobius变换及其在相对论和信号分析中的应用
  • 批准号:
    11071230
  • 批准年份:
    2010
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
分形上的分析及其应用
  • 批准号:
    10471150
  • 批准年份:
    2004
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目

相似海外基金

Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
  • 批准号:
    2348384
  • 财政年份:
    2024
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Standard Grant
EnamExcel: Iteratively develop the world's first varnish that regenerates and regrows human enamel and transforms global oral health.
EnamExcel:迭代开发世界上第一个能够再生和再生人类牙釉质并改变全球口腔健康的清漆。
  • 批准号:
    10094179
  • 财政年份:
    2024
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Collaborative R&D
PLEIADS: Application of an Innovative Know-Your-Customer Digital Platform Which Transforms the KYC Ecosystem by Allowing Clients to Process Data Themselves and Mutualising Client On-Boarding Across Organisations.
PLEIADS:创新的“了解您的客户”数字平台的应用,该平台允许客户自行处理数据并实现跨组织的客户加入,从而改变 KYC 生态系统。
  • 批准号:
    10057410
  • 财政年份:
    2023
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Collaborative R&D
Indigenous mathematical transforms
本土数学变换
  • 批准号:
    IN230100053
  • 财政年份:
    2023
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Discovery Indigenous
Quantum computing with differentiable quantum transforms
具有可微量子变换的量子计算
  • 批准号:
    576833-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Alliance Grants
A development of raw image coding with generalized spectral-spatial transforms
广义谱空间变换原始图像编码的发展
  • 批准号:
    22K04084
  • 财政年份:
    2022
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integral transforms and moduli theory
积分变换和模理论
  • 批准号:
    FT210100405
  • 财政年份:
    2022
  • 资助金额:
    $ 36.06万
  • 项目类别:
    ARC Future Fellowships
Precise operator norm estimates for diverse collections of maximal directional Hilbert transforms
最大方向希尔伯特变换的不同集合的精确算子范数估计
  • 批准号:
    566582-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Non-Canonical Integral Transforms for Multistatic Synthetic Aperture Radar (SAR) and Video SAR (VSAR) for Target Motion
用于目标运动的多基地合成孔径雷达 (SAR) 和视频 SAR (VSAR) 的非规范积分变换
  • 批准号:
    2905381
  • 财政年份:
    2022
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Studentship
Solving functional equations and inverting transforms that arise in the study of Markov models
求解马尔可夫模型研究中出现的函数方程和反变换
  • 批准号:
    562478-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 36.06万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了