Radon transforms: geometric combinatorics, regularity, and extensions
Radon 变换:几何组合、正则性和扩展
基本信息
- 批准号:0850791
- 负责人:
- 金额:$ 7.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-01 至 2011-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to address a series of interesting open problems in mathematical analysis relating to the Radon transform and its generalizations. These problems include determining the boundedness of certain multilinear functionals (nonlinear analogues of the Holder-Brascamp-Lieb inequalities) on products of Lebesgue spaces, as well as the understanding of the regularity of averaging operators (in both the standard and overdetermined cases) on Lebesgue and Lebesgue square integrable Sobolev spaces.Radon transforms and their generalizations are intimately connected to some of the greatest outstanding problems in modern analysis, including the Kakeya conjecture, the Bochner-Riesz conjecture, the Restriction conjecture, and Sogge?s local smoothing conjecture. The intellectual merit of the particular problems to be studied in this project is that their solutions require significant new theoretical insight, and they are potentially significant steps on the road to solution of some of these broader outstanding problems.A better understanding the Radon transform and its generalizations also may have broader impacts on other fields within the scientific community. Medical imaging, including CT and SPECT scans, NMR imaging, RADAR, and SONAR applications all depend on a deep theoretical and practical understanding of the Radon transform. Optical-acoustic tomography, scattering theory, and even motion-detection algorithms also depend on the Radon transform. All of these fields and more could potentially benefit from insights produced by this project.
这个项目的目标是解决一系列有趣的开放问题,在数学分析有关的拉东变换及其推广。 这些问题包括确定某些多线性泛函的有界性(Holder-Brascamp-Lieb不等式的非线性类似物)关于Lebesgue空间的乘积,以及对平均算子规律性的理解(在标准和超定情况下)Radon变换及其推广与Lebesgue和Lebesgue平方可积Sobolev空间中的一些最伟大的悬而未决的问题密切相关,现代分析,包括挂谷猜想,Bochner-Riesz猜想,限制猜想,和Sogge?的局部光滑化猜想。 在这个项目中要研究的特定问题的智力价值是,他们的解决方案需要重要的新的理论见解,他们是潜在的重要步骤,在解决这些更广泛的突出问题的道路上,更好地理解Radon变换及其推广也可能有更广泛的影响,在科学界的其他领域。医学成像,包括CT和SPECT扫描,NMR成像,雷达和声纳应用都依赖于对Radon变换的深刻理论和实践理解。光声层析成像,散射理论,甚至运动检测算法也依赖于Radon变换。所有这些领域以及更多领域都可能受益于该项目产生的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Gressman其他文献
Philip Gressman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Gressman', 18)}}的其他基金
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
- 批准号:
2348384 - 财政年份:2024
- 资助金额:
$ 7.17万 - 项目类别:
Standard Grant
Geometric Harmonic Analysis: Affine and Frobenius-Hörmander Geometry
几何调和分析:仿射几何和 Frobenius-Hörmander 几何
- 批准号:
2054602 - 财政年份:2021
- 资助金额:
$ 7.17万 - 项目类别:
Standard Grant
Geometric Harmonic Analysis: Affine and Frobenius-Hormander Geometry for Multilinear Operators
几何调和分析:多线性算子的仿射和 Frobenius-Hormander 几何
- 批准号:
1764143 - 财政年份:2018
- 资助金额:
$ 7.17万 - 项目类别:
Standard Grant
Conference in Harmonic Analysis at the International Centre for Mathematical Sciences (ICMS)
国际数学科学中心 (ICMS) 调和分析会议
- 批准号:
1700938 - 财政年份:2017
- 资助金额:
$ 7.17万 - 项目类别:
Standard Grant
Radon transforms: geometric combinatorics, regularity, and applications
Radon 变换:几何组合、正则性和应用
- 批准号:
1361697 - 财政年份:2014
- 资助金额:
$ 7.17万 - 项目类别:
Continuing Grant
Radon transforms: geometric combinatorics, regularity, and extensions
Radon 变换:几何组合、正则性和扩展
- 批准号:
1101393 - 财政年份:2011
- 资助金额:
$ 7.17万 - 项目类别:
Standard Grant
Radon transforms: geometric combinatorics, regularity, and extensions
Radon 变换:几何组合、正则性和扩展
- 批准号:
0653755 - 财政年份:2007
- 资助金额:
$ 7.17万 - 项目类别:
Standard Grant
相似国自然基金
全纯Mobius变换及其在相对论和信号分析中的应用
- 批准号:11071230
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
分形上的分析及其应用
- 批准号:10471150
- 批准年份:2004
- 资助金额:15.0 万元
- 项目类别:面上项目
相似海外基金
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
- 批准号:
2348384 - 财政年份:2024
- 资助金额:
$ 7.17万 - 项目类别:
Standard Grant
EnamExcel: Iteratively develop the world's first varnish that regenerates and regrows human enamel and transforms global oral health.
EnamExcel:迭代开发世界上第一个能够再生和再生人类牙釉质并改变全球口腔健康的清漆。
- 批准号:
10094179 - 财政年份:2024
- 资助金额:
$ 7.17万 - 项目类别:
Collaborative R&D
PLEIADS: Application of an Innovative Know-Your-Customer Digital Platform Which Transforms the KYC Ecosystem by Allowing Clients to Process Data Themselves and Mutualising Client On-Boarding Across Organisations.
PLEIADS:创新的“了解您的客户”数字平台的应用,该平台允许客户自行处理数据并实现跨组织的客户加入,从而改变 KYC 生态系统。
- 批准号:
10057410 - 财政年份:2023
- 资助金额:
$ 7.17万 - 项目类别:
Collaborative R&D
Indigenous mathematical transforms
本土数学变换
- 批准号:
IN230100053 - 财政年份:2023
- 资助金额:
$ 7.17万 - 项目类别:
Discovery Indigenous
Quantum computing with differentiable quantum transforms
具有可微量子变换的量子计算
- 批准号:
576833-2022 - 财政年份:2022
- 资助金额:
$ 7.17万 - 项目类别:
Alliance Grants
A development of raw image coding with generalized spectral-spatial transforms
广义谱空间变换原始图像编码的发展
- 批准号:
22K04084 - 财政年份:2022
- 资助金额:
$ 7.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integral transforms and moduli theory
积分变换和模理论
- 批准号:
FT210100405 - 财政年份:2022
- 资助金额:
$ 7.17万 - 项目类别:
ARC Future Fellowships
Precise operator norm estimates for diverse collections of maximal directional Hilbert transforms
最大方向希尔伯特变换的不同集合的精确算子范数估计
- 批准号:
566582-2021 - 财政年份:2022
- 资助金额:
$ 7.17万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Non-Canonical Integral Transforms for Multistatic Synthetic Aperture Radar (SAR) and Video SAR (VSAR) for Target Motion
用于目标运动的多基地合成孔径雷达 (SAR) 和视频 SAR (VSAR) 的非规范积分变换
- 批准号:
2905381 - 财政年份:2022
- 资助金额:
$ 7.17万 - 项目类别:
Studentship
Immune cell targeting of corticosteroids transforms the treatment of severe, chronic inflammatory diseases
皮质类固醇的免疫细胞靶向改变了严重慢性炎症性疾病的治疗
- 批准号:
10435587 - 财政年份:2021
- 资助金额:
$ 7.17万 - 项目类别: