Analysis of Combinatorial Optimization Problems with Submodular Structures and Design of Efficient Algorithms

子模结构组合优化问题分析及高效算法设计

基本信息

  • 批准号:
    01540168
  • 负责人:
  • 金额:
    $ 0.64万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1989
  • 资助国家:
    日本
  • 起止时间:
    1989 至 1990
  • 项目状态:
    已结题

项目摘要

We examined the practicality and applicability of the algorithm for the minimum norm point problem on a polytope to the submodular function minimization problem, which is a fundamental problem in combinatorial optimization problems with submodular structures. The computational experiments showed a good performance and practicality of the algorithm. However, we still have certain technical computational problem concerning the algorithm, which is left for future research. Furthermore, we proposed a concept of combinatorial hull, which is a generalization of the concept of convex hull. This gives a basis for developing a new method for solving the submodular function minimization problem in a purely combinatorial manner. We are making a progress in this direction.Also, we developed a scaling technique for finding a maximum mean cut in a network, which is an important component in algorithms for the minimum cost flow problem. This approach can be extended to the submodular flow problem, a generalization of the minimum cost flow problem, and furnishes an efficient algorithm that is new and runs in polynomial time.Moreover, through the two-year survey research, we examined, from the point of view of submodular and supermodular systems, the combinatorial optimization problems with submodular structures related to : base polyhedra, greedy algorithm, crossing families, generalized polymatroids, neoflows, submodular flows, independent flows, polymatroid flows, submodular analysis, submodular programs, lexicographically optimal bases, the resource allocation problem with submodular constraints etc. We gave a unifying approach to these problems and the results will be published as a monograph. Also, in the course of this survey research we found an error in the bi-truncation algorithm recently proposed by Frank and Tardos, related to the submodular function minimization problem, and showed a correct version of it.
将多面体上最小范数点问题的算法应用于子模结构组合优化问题中的基本问题——子模函数最小化问题,验证了该算法的实用性和适用性。计算实验表明,该算法具有良好的性能和实用性。但是,该算法还存在一定的技术计算问题,有待进一步研究。在此基础上,提出了组合船体的概念,这是对凸船体概念的推广。这为发展一种以纯组合方式求解次模函数最小化问题的新方法奠定了基础。我们正朝着这个方向取得进展。此外,我们开发了一种缩放技术,用于在网络中寻找最大平均切割,这是最小成本流问题算法的重要组成部分。该方法可以推广到次模流问题,即最小代价流问题的推广,并提供了一种新的、运行时间为多项式的高效算法。此外,通过两年的调查研究,我们从次模和超模系统的角度研究了具有次模结构的组合优化问题,涉及到:基多面体、贪心算法、交叉族、广义多拟体、新流、次模流、独立流、多拟体流、次模分析、次模程序、字典最优基、具有次模约束的资源分配问题等。我们对这些问题给出了一个统一的方法,结果将作为专著发表。此外,在这次调查研究的过程中,我们发现了Frank和Tardos最近提出的关于次模函数最小化问题的双截断算法中的一个错误,并给出了一个正确的版本。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kazuo Iwano: "A New Scaling Algorithm for the Maximum Mean Cut Problem" Algorithmica.
Kazuo Iwano:“最大均值割问题的新缩放算法”Algorithmica。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takeshi MAITOH: "A note on the Frank-Tardos bi-truncation algorithm for crossing submodular functions" Mathematical Programming.
Takeshi MAITOH:“关于用于交叉子模函数的 Frank-Tardos 双截断算法的注释”数学编程。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K. Iwano, S. Misono, S. Tezuka and S. Fujishige: "A new scaling algorithm for the maximum mean cut problem" Algorithmica.
K. Iwano、S. Misono、S. Tezuka 和 S. Fujishige:“最大平均切割问题的新缩放算法”Algorithmica。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Satoru FUJISHIGE: "Submodular Functions and Optimization" North-Holland, 270 (1991)
Satoru FUJISHIGE:“子模函数和优化” North-Holland,270 (1991)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S. Fujishige and P. Zhan: "A dual algorithm for finding the minimum-norm point in a polytope" Journal of the Operations Research Society of Japan. 33. 188-195 (1990)
S. Fujishige 和 P. Zhan:“在多胞体中寻找最小范数点的双重算法”,日本运筹学会杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

FUJISHIGE Satoru其他文献

FUJISHIGE Satoru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('FUJISHIGE Satoru', 18)}}的其他基金

Developments of the Fundamental Theory of Discrete Optimization andFast Algorithms Based on Submodular Structures
基于子模结构的离散优化基本理论和快速算法的发展
  • 批准号:
    20310088
  • 财政年份:
    2008
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis of Large-scale Discrete Optimization Problems and Development of Efficient Algorithms Based on Submodularity Structures
基于子模结构的大规模离散优化问题分析和高效算法开发
  • 批准号:
    16310111
  • 财政年份:
    2004
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Fundamental Research on Fast Algorithms for Large-Scale Discrete Optimization Problems Based on Submodularity Structures
基于子模结构的大规模离散优化问题快速算法基础研究
  • 批准号:
    13480113
  • 财政年份:
    2001
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Basic Studies on Submodular Structure of Large-scale Combinatorial Systems
大规模组合系统子模结构的基础研究
  • 批准号:
    10680429
  • 财政年份:
    1998
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational Efficiency of Discrete Optimization Algorithms and Discrete Structures
离散优化算法和离散结构的计算效率
  • 批准号:
    10205217
  • 财政年份:
    1998
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (B)
Fundamental Studies on Large-Scale combinatorial Systems Based on Submodular Analysis
基于子模分析的大规模组合系统基础研究
  • 批准号:
    04832006
  • 财政年份:
    1992
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Efficient Algorithms for Combinatorial Optimization Problems in Networks and Beyond
网络及其他领域组合优化问题的有效算法
  • 批准号:
    RGPIN-2017-03956
  • 财政年份:
    2022
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms for Combinatorial Optimization Problems
组合优化问题的近似算法
  • 批准号:
    RGPIN-2020-06423
  • 财政年份:
    2022
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for hard quadratic combinatorial optimization problems and linkages with quantum bridge analytics
硬二次组合优化问题的算法以及与量子桥分析的联系
  • 批准号:
    RGPIN-2021-03190
  • 财政年份:
    2022
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Discovery Grants Program - Individual
A study on practical algorithms for combinatorial optimization based on approximate submodularity
基于近似子模性的组合优化实用算法研究
  • 批准号:
    22K17857
  • 财政年份:
    2022
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Efficient Algorithms for Combinatorial Optimization Problems in Networks and Beyond
网络及其他领域组合优化问题的有效算法
  • 批准号:
    RGPIN-2017-03956
  • 财政年份:
    2021
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for hard quadratic combinatorial optimization problems and linkages with quantum bridge analytics
硬二次组合优化问题的算法以及与量子桥分析的联系
  • 批准号:
    RGPIN-2021-03190
  • 财政年份:
    2021
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and algorithms for combinatorial optimization under uncertainty
不确定性下的组合优化理论与算法
  • 批准号:
    21H03397
  • 财政年份:
    2021
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Approximation Algorithms for Combinatorial Optimization Problems
组合优化问题的近似算法
  • 批准号:
    RGPIN-2020-06423
  • 财政年份:
    2021
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Algorithms for Combinatorial Optimization Problems in Networks and Beyond
网络及其他领域组合优化问题的有效算法
  • 批准号:
    RGPIN-2017-03956
  • 财政年份:
    2020
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: EAGER-QSA: Variational Monte-Carlo-Inspired Quantum Algorithms for Many-Body Systems and Combinatorial Optimization
合作研究:EAGER-QSA:用于多体系统和组合优化的变分蒙特卡罗量子算法
  • 批准号:
    2038030
  • 财政年份:
    2020
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了