Basic Studies on Submodular Structure of Large-scale Combinatorial Systems
大规模组合系统子模结构的基础研究
基本信息
- 批准号:10680429
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The most important result of this project is the combinatorial, strongly polynomial-time algorithm for minimizing submodular functions. It has been a long-standing open problem to obtain such a combinatorial algorithm since 1981. With the aid of this algorithm we can construct efficient algorithms for a lot of combinatorial optimization problems such as the submodular flow problem for which existing algorithms assume the oracle for submodular function minimization.Moreover, we have obtained the following results. We gave a short proof of the validity of M. Queyranne's algorithm for minimizing symmetric submodular functions. We proposed an algorithm for minimizing submodular functions arising from concave functions by means of parametric max-flow algorithms. We also showed the laminarity property of posi-modular functions, which generalize symmetric submodular functions. Furthermore, we proved that the dual greedy polyhedra investigated by Faigle and Kern belong to the class of submodular flow polyhedra. Concerning the minimum-norm point problem, related to submodular function minimization, we proposed an efficient algorithm for finding the minimum-norm point in the intersection of the convex hull of points and an affine space.
这个项目最重要的成果是组合,强多项式时间算法最小化次模函数。自1981年以来,获得这样的组合算法一直是一个长期存在的公开问题。借助于该算法,我们可以构造出求解许多组合优化问题的有效算法,如求解子模流问题,而已有的算法都是假设子模函数极小化的预言。我们对M的有效性给出了一个简短的证明。求对称次模函数最小值的Queyranne算法。利用参数最大流算法,提出了一个极小化凹函数的次模函数的算法。证明了正模函数的层合性,推广了对称次模函数。进一步证明了Faigle和克恩研究的对偶贪婪多面体属于次模流多面体类。针对与次模函数极小化有关的最小范数点问题,提出了一种求点的凸船体与仿射空间交线上最小范数点的有效算法.
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S. Fujishige and S. Iwata: "Minimizing a submodular function arising from a concave function."Discrete Applied Mathematics. 92. 211-215 (1999)
S. Fujishige 和 S. Iwata:“最小化由凹函数引起的子模函数。”离散应用数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Fujishige: Linear Algebra and Its Applications. 279. 75-91 (1998)
S.Fujishige:线性代数及其应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S. Fujishige: "Another simple proof of the validity of Nagamochi and Ibaraki's min-cut algorithm and Queyranne's extension to symmetric submodular function minimization."Journal fo the Operations Research Society of Japan. 41. 626-628 (1998)
S. Fujishige:“Nagamochi 和 Ibaraki 的最小割算法以及 Queyranne 对对称子模函数最小化的扩展的有效性的另一个简单证明。”日本运筹学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Fujishige,X.Liu and X.Zhang: "An algorithm for solving the minimum norm point over the intersection of a polytope and an affine set"Journal of Optimization Theory and Applications. (to appear).
S.Fujishige,X.Liu和X.Zhang:“求解多面体和仿射集交集上的最小范数点的算法”优化理论与应用杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S. Fujishige and S. Iwata: "Algorithms for submodular flows"IEICE Transactions. (to appear).
S. Fujishige 和 S. Iwata:“子模流算法”IEICE Transactions。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUJISHIGE Satoru其他文献
FUJISHIGE Satoru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUJISHIGE Satoru', 18)}}的其他基金
Developments of the Fundamental Theory of Discrete Optimization andFast Algorithms Based on Submodular Structures
基于子模结构的离散优化基本理论和快速算法的发展
- 批准号:
20310088 - 财政年份:2008
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of Large-scale Discrete Optimization Problems and Development of Efficient Algorithms Based on Submodularity Structures
基于子模结构的大规模离散优化问题分析和高效算法开发
- 批准号:
16310111 - 财政年份:2004
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fundamental Research on Fast Algorithms for Large-Scale Discrete Optimization Problems Based on Submodularity Structures
基于子模结构的大规模离散优化问题快速算法基础研究
- 批准号:
13480113 - 财政年份:2001
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Computational Efficiency of Discrete Optimization Algorithms and Discrete Structures
离散优化算法和离散结构的计算效率
- 批准号:
10205217 - 财政年份:1998
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas (B)
Fundamental Studies on Large-Scale combinatorial Systems Based on Submodular Analysis
基于子模分析的大规模组合系统基础研究
- 批准号:
04832006 - 财政年份:1992
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Analysis of Combinatorial Optimization Problems with Submodular Structures and Design of Efficient Algorithms
子模结构组合优化问题分析及高效算法设计
- 批准号:
01540168 - 财政年份:1989
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Strengths and Limitations of Formulations for Combinatorial Optimization Problems.
组合优化问题公式的优点和局限性。
- 批准号:
RGPIN-2020-04346 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Hybridization of photovoltaic power generation and solar thermal power generation by combinatorial optimization
通过组合优化实现光伏发电与光热发电的混合
- 批准号:
22K03875 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Efficient Algorithms for Combinatorial Optimization Problems in Networks and Beyond
网络及其他领域组合优化问题的有效算法
- 批准号:
RGPIN-2017-03956 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Approximation Algorithms for Combinatorial Optimization Problems
组合优化问题的近似算法
- 批准号:
RGPIN-2020-06423 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Developing Theory of Combinatorial Optimization Based on Matrix Representations
发展基于矩阵表示的组合优化理论
- 批准号:
22K17853 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Algorithms for hard quadratic combinatorial optimization problems and linkages with quantum bridge analytics
硬二次组合优化问题的算法以及与量子桥分析的联系
- 批准号:
RGPIN-2021-03190 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Advancing Combinatorial Optimization Accelerataors with Compute in Memory Design Approach
职业:通过内存计算设计方法推进组合优化加速器
- 批准号:
2145236 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Continuing Grant
Preference-Based Combinatorial Optimization
基于偏好的组合优化
- 批准号:
RGPIN-2021-04109 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Hybrid artificial intelligence methods for combinatorial optimization
用于组合优化的混合人工智能方法
- 批准号:
RGPIN-2022-03964 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Efficient computing systems for deep learning and combinatorial optimization
用于深度学习和组合优化的高效计算系统
- 批准号:
552712-2020 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Alliance Grants