Fundamental Research on Fast Algorithms for Large-Scale Discrete Optimization Problems Based on Submodularity Structures

基于子模结构的大规模离散优化问题快速算法基础研究

基本信息

项目摘要

Major research results we obtained are the following :1. We proposed efficient algorithms for source location, problems with flow requirement, which was based on the submodularity of cut functions of the underlying flow network.2. We presented new algorithms for maximum matchings in regular bipartite graphs and for maximum flows in directed networks by means of maximum-adjacency ordering.3. We showed a new approach to submodular function minimization problem presenting an O(n^2) algorithm using the membership oracle for base polyhedra.4. We revealed the equivalence between discrete convexity and the gross substitutes condition in economics, and using discrete concave utility functions, we extended the concept of stable marriage due to Gale and Shapley and showed the existence of stable solutions algorithmically.5. We introduced the concept of polybasic polyhedron by generalizing that of base polyhedron, a fundamental submodularity structure, which lead us to a new general framework for polyhedral structure of submodularity.6. We presented a sequential pseudo-polynomial algorithm for enumerating minimal integral solutions of monotone linear systems.7. We showed the hardness of enumerating maximal frequent sets and the polynomial-time solvability of enumerating minimal non-frequent sets.
主要研究成果如下:1.基于底层流网络割函数的子模性,提出了流需求源定位问题的有效算法.利用最大邻接序给出了正则二部图最大匹配和有向网络最大流的新算法.我们提出了一种新的方法来解决子模函数极小化问题,给出了一个O(n^2)的算法,使用了基多面体的成员预言。揭示了离散凸性与经济学中总替代条件的等价性,并利用离散凹效用函数,推广了Gale和Shapley的稳定婚姻概念,给出了稳定解的存在性算法.通过推广基多面体的概念,引入了多面体的概念,从而得到了一个新的子模多面体结构的一般框架.提出了一种序列伪多项式算法,用于求解单调线性方程组的极小积分解.证明了最大频繁集计数的困难性和最小非频繁集计数的多项式时间可解性。

项目成果

期刊论文数量(84)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Ito, K.Makino, K.Arata, S.Honami, Y.Itatsu, S.Fujishige: "Source location problem with flow requirements in directed networks"Optimization Methods and Software. 18. 427-435 (2003)
H.Ito、K.Makino、K.Arata、S.Honami、Y.Itatsu、S.Fujishige:“有向网络中流量需求的源定位问题”优化方法和软件。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Ibaraki, A.Kogan, K.Makino: "Inferring minimal functional dependencies in Horn and q-Horn theories"Annals of Mathematics and Artificial Intelligence. 38. 233-255 (2003)
T.Ibaraki、A.Kogan、K.Makino:“推断 Horn 和 q-Horn 理论中的最小函数依赖性”数学与人工智能年鉴。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Ono, K.Makino, T.Ibaraki: "Logical analysis of data with decomposable structures"Theoretical Computer Science. 289. 977-995 (2002)
H.Ono、K.Makino、T.Ibaraki:“具有可分解结构的数据的逻辑分析”理论计算机科学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
E.Boros, T.Horiyama, T.Ibaraki, K.Makino, M.Yagiura: "Finding essential attributes in binary data"Annals of Mathematics and Artificial Intelligence. 39. 223-257 (2003)
E.Boros、T.Horiyama、T.Ibaraki、K.Makino、M.Yagiura:“在二进制数据中寻找基本属性”数学与人工智能年鉴。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
E.Boros: "Dual-bounded generating problems : All minimal integer solutions for a monotone system of linear inequalities"SIAM Journal on Computing. 31. 1624-1643 (2002)
E.Boros:“对偶有界生成问题:线性不等式单调系统的所有最小整数解”SIAM 计算杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

FUJISHIGE Satoru其他文献

FUJISHIGE Satoru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('FUJISHIGE Satoru', 18)}}的其他基金

Developments of the Fundamental Theory of Discrete Optimization andFast Algorithms Based on Submodular Structures
基于子模结构的离散优化基本理论和快速算法的发展
  • 批准号:
    20310088
  • 财政年份:
    2008
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis of Large-scale Discrete Optimization Problems and Development of Efficient Algorithms Based on Submodularity Structures
基于子模结构的大规模离散优化问题分析和高效算法开发
  • 批准号:
    16310111
  • 财政年份:
    2004
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Basic Studies on Submodular Structure of Large-scale Combinatorial Systems
大规模组合系统子模结构的基础研究
  • 批准号:
    10680429
  • 财政年份:
    1998
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational Efficiency of Discrete Optimization Algorithms and Discrete Structures
离散优化算法和离散结构的计算效率
  • 批准号:
    10205217
  • 财政年份:
    1998
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (B)
Fundamental Studies on Large-Scale combinatorial Systems Based on Submodular Analysis
基于子模分析的大规模组合系统基础研究
  • 批准号:
    04832006
  • 财政年份:
    1992
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Analysis of Combinatorial Optimization Problems with Submodular Structures and Design of Efficient Algorithms
子模结构组合优化问题分析及高效算法设计
  • 批准号:
    01540168
  • 财政年份:
    1989
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

CAREER: Machine Learning for Discrete Optimization
职业:用于离散优化的机器学习
  • 批准号:
    2338226
  • 财政年份:
    2024
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Continuing Grant
A study on auctions in two-sided markets via discrete optimization
基于离散优化的双边市场拍卖研究
  • 批准号:
    22KJ1137
  • 财政年份:
    2023
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Algorithms for large-scale discrete optimization problems arising in logistics and machine learning
物流和机器学习中出现的大规模离散优化问题的算法
  • 批准号:
    RGPIN-2020-06311
  • 财政年份:
    2022
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Adaptive Gaussian Markov Random Fields for Large-scale Discrete Optimization via Simulation
协作研究:通过仿真实现大规模离散优化的自适应高斯马尔可夫随机场
  • 批准号:
    2243210
  • 财政年份:
    2022
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Standard Grant
Metaheuristics and Heuristics for Combinatorial and Discrete Optimization Problems
组合和离散优化问题的元启发式和启发式
  • 批准号:
    DDG-2021-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Discovery Development Grant
Discrete Optimization under Interactions and Uncertainty
交互作用和不确定性下的离散优化
  • 批准号:
    RGPIN-2020-05395
  • 财政年份:
    2022
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for large-scale discrete optimization problems arising in logistics and machine learning
物流和机器学习中出现的大规模离散优化问题的算法
  • 批准号:
    RGPIN-2020-06311
  • 财政年份:
    2022
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Discovery Grants Program - Individual
New Machine Learning Approaches for Discrete Optimization
用于离散优化的新机器学习方法
  • 批准号:
    RGPIN-2020-06560
  • 财政年份:
    2022
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Discovery Grants Program - Individual
Discrete Optimization under Interactions and Uncertainty
交互作用和不确定性下的离散优化
  • 批准号:
    RGPIN-2020-05395
  • 财政年份:
    2022
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Discovery Grants Program - Individual
Discrete Optimization for University Course Timetabling
大学课程时间表的离散优化
  • 批准号:
    565268-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了