Computational Efficiency of Discrete Optimization Algorithms and Discrete Structures
离散优化算法和离散结构的计算效率
基本信息
- 批准号:10205217
- 负责人:
- 金额:$ 11.2万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research on Priority Areas (B)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research project is to examine the underlying combinatorial structure of optimization problems that can be solved efficiently, and to give a unifying principle for designing efficient algorithms for such a class of combinatorial optimization problems. Our major results of the project are the following.1. We succeeded in resolving the long-standing open problem of devising a combinatorial (strongly) polynomial algorithm for minimizing submodular functions. This gave great impact on the field of discrete optimization. Following this result, we also developed a fully combinatorial strongly polynomial algorithm for submodular function minimization, and a combinatorial polynomial-time algorithm for bisubmodular function minimization, a generalization of submodular function minimization.2. The second cluster of results are concerned with network optimization problems. We considered a source location problem with flow requirements in undirected networks and devised a fast algorithm for solving it. Also we developed an efficient algorithm for L_∞-minimax inverse problem of the minimum cut problem by taking a parametric approach, and we obtained a characterization of the so-called polybasic polyhedra that generalize the boundary polyhedra of generalized flows.3. As the third cluster of results, we developed a polynomial-time algorithm for finding an optimal coterie in distributed systems, and we succeeded in constructing pseudopolynomial-time algorithms for enumerating partial transversals and multiple transversals of hypergraphs arising in the fields of data mining and learning theory.Besides these results, we revealed the deep underlying relationship between the submodularity and the economic equilibrium analysis by showing the equivalence of the M^?-concavity of the relevant set function and the gross substitutes condition in the matching (or equilibrium) model with indivisible commodities.
本研究项目的目的是研究可有效解决的优化问题的潜在组合结构,并给出为这类组合优化问题设计有效算法的统一原则。我们这个项目的主要成果如下:我们成功地解决了设计最小化子模函数的组合(强)多项式算法的长期开放问题。这对离散优化领域产生了很大的影响。根据这一结果,我们还开发了子模函数最小化的全组合强多项式算法和双子模函数最小化的组合多项式时间算法,这是子模函数最小化的推广。第二组结果与网络优化问题有关。考虑无向网络中具有流量要求的源定位问题,设计了一种快速求解算法。采用参数化方法,提出了求解最小割问题的L_∞-极小极大反问题的有效算法,并得到了广义流边界多面体的所谓多基多面体的一个表征。作为第三组结果,我们开发了一种多项式时间算法,用于在分布式系统中寻找最优小圈子,我们成功地构建了伪多项式时间算法,用于枚举数据挖掘和学习理论领域中出现的超图的部分截线和多截线。除了这些结果外,我们还通过展示M^?-不可分商品匹配(或均衡)模型中相关集合函数的凹性和总量替代条件。
项目成果
期刊论文数量(140)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Arata,K.: "Locating sources to meet flow demands in undirected networks"SWAT2000,LNCS. 1851. 300-313 (2000)
Arata,K.:“定位源以满足无向网络中的流量需求”SWAT2000,LNCS。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Makino, K.: "Inner-core and outer-core functions of partially defined Boolean functions"Discrete Applied Mathematics. 96-97. 443-460 (1999)
Makino, K.:“部分定义的布尔函数的内核和外核函数”离散应用数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Fujishige, S.: "A lexicographic algebraic theorem and its applications"Linear Algebra and its Applications. 279. 75-91 (1998)
Fujishige, S.:“字典代数定理及其应用”线性代数及其应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Eiter, T.: "Bidual Horn functions and extensions"Discrete Applied Mathematics. 96-97. 55-88 (1999)
Eiter, T.:“双喇叭函数和扩展”离散应用数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Boros, E.: "Finding essential attributes in binary data"Springer Lecture Notes in Computer Science(Proceedings of IDEAL2000(Leung,K.Sak.et al.eds.)). 1983. 133-138 (2000)
Boros, E.:“在二进制数据中查找基本属性”Springer 计算机科学讲义(IDEAL2000 论文集(Leung,K.Sak.et al.eds.))。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUJISHIGE Satoru其他文献
FUJISHIGE Satoru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUJISHIGE Satoru', 18)}}的其他基金
Developments of the Fundamental Theory of Discrete Optimization andFast Algorithms Based on Submodular Structures
基于子模结构的离散优化基本理论和快速算法的发展
- 批准号:
20310088 - 财政年份:2008
- 资助金额:
$ 11.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of Large-scale Discrete Optimization Problems and Development of Efficient Algorithms Based on Submodularity Structures
基于子模结构的大规模离散优化问题分析和高效算法开发
- 批准号:
16310111 - 财政年份:2004
- 资助金额:
$ 11.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fundamental Research on Fast Algorithms for Large-Scale Discrete Optimization Problems Based on Submodularity Structures
基于子模结构的大规模离散优化问题快速算法基础研究
- 批准号:
13480113 - 财政年份:2001
- 资助金额:
$ 11.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Basic Studies on Submodular Structure of Large-scale Combinatorial Systems
大规模组合系统子模结构的基础研究
- 批准号:
10680429 - 财政年份:1998
- 资助金额:
$ 11.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fundamental Studies on Large-Scale combinatorial Systems Based on Submodular Analysis
基于子模分析的大规模组合系统基础研究
- 批准号:
04832006 - 财政年份:1992
- 资助金额:
$ 11.2万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Analysis of Combinatorial Optimization Problems with Submodular Structures and Design of Efficient Algorithms
子模结构组合优化问题分析及高效算法设计
- 批准号:
01540168 - 财政年份:1989
- 资助金额:
$ 11.2万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
CAREER: Machine Learning for Discrete Optimization
职业:用于离散优化的机器学习
- 批准号:
2338226 - 财政年份:2024
- 资助金额:
$ 11.2万 - 项目类别:
Continuing Grant
A study on auctions in two-sided markets via discrete optimization
基于离散优化的双边市场拍卖研究
- 批准号:
22KJ1137 - 财政年份:2023
- 资助金额:
$ 11.2万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Algorithms for large-scale discrete optimization problems arising in logistics and machine learning
物流和机器学习中出现的大规模离散优化问题的算法
- 批准号:
RGPIN-2020-06311 - 财政年份:2022
- 资助金额:
$ 11.2万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Adaptive Gaussian Markov Random Fields for Large-scale Discrete Optimization via Simulation
协作研究:通过仿真实现大规模离散优化的自适应高斯马尔可夫随机场
- 批准号:
2243210 - 财政年份:2022
- 资助金额:
$ 11.2万 - 项目类别:
Standard Grant
Metaheuristics and Heuristics for Combinatorial and Discrete Optimization Problems
组合和离散优化问题的元启发式和启发式
- 批准号:
DDG-2021-00019 - 财政年份:2022
- 资助金额:
$ 11.2万 - 项目类别:
Discovery Development Grant
Discrete Optimization under Interactions and Uncertainty
交互作用和不确定性下的离散优化
- 批准号:
RGPIN-2020-05395 - 财政年份:2022
- 资助金额:
$ 11.2万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for large-scale discrete optimization problems arising in logistics and machine learning
物流和机器学习中出现的大规模离散优化问题的算法
- 批准号:
RGPIN-2020-06311 - 财政年份:2022
- 资助金额:
$ 11.2万 - 项目类别:
Discovery Grants Program - Individual
Discrete Optimization under Interactions and Uncertainty
交互作用和不确定性下的离散优化
- 批准号:
RGPIN-2020-05395 - 财政年份:2022
- 资助金额:
$ 11.2万 - 项目类别:
Discovery Grants Program - Individual
New Machine Learning Approaches for Discrete Optimization
用于离散优化的新机器学习方法
- 批准号:
RGPIN-2020-06560 - 财政年份:2022
- 资助金额:
$ 11.2万 - 项目类别:
Discovery Grants Program - Individual
Discrete Optimization for University Course Timetabling
大学课程时间表的离散优化
- 批准号:
565268-2021 - 财政年份:2021
- 资助金额:
$ 11.2万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's