Study of the theory of statistical multivariate analysis and its application to economic analysis

统计多元分析理论及其在经济分析中的应用研究

基本信息

  • 批准号:
    02630011
  • 负责人:
  • 金额:
    $ 1.34万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1990
  • 资助国家:
    日本
  • 起止时间:
    1990 至 1992
  • 项目状态:
    已结题

项目摘要

This project focused on theoretical study of multivariate analysis in the framework of multivariate normal distribution and the investigation of the assumption of multivariate normality. During the period of this study this author published two textbooks, "Introduction to Multivariate Statistical Inference" (Kyoritsu shuppan) and "Modern Mathematical Statistics" (Soubunsha). The former presents this authors's view of the theoretical framework and the recent important developments of multivariate analysis in a concise and self-contained manner. The latter is a readable textbook on the theory of mathematical statistics including graduate level materials. Concerning the theoretical study of multivariate analysis this author published a survey paper on zonal polynomials continuing his study on the subject. In a joint paper with Yo Sheena this author published a paper concerning the admissibility of orthogonally invariant estimator in the estimation of covariance matrix of a multivariate normal population. On the test of equality of covariance matrices this author gave a detailed decomposition of the likelihood ratio test (to appear). For the investigation of the multivariate normality this author discussed joint higher order moments in the framework of orthogonal invariance and derived the maximal invariants. Based on the invariant third order moments this author proposed a test of multivariate normality (to appear). Thus useful results on multivariate analysis have been obtained in this project. On the other hand concrete results on multivariate time series models and its application to economic analysis have not yet been obtained as planned in this project.
本项目主要研究多元正态分布框架下的多元分析理论和多元正态假设的研究。在本研究期间,作者出版了两本教科书,《多元统计推断导论》(共立书)和《现代数理统计》(总论社)。前者提出了作者的观点的理论框架和最近的重要发展多元分析在一个简洁和自足的方式。后者是一本关于数理统计理论的可读教科书,包括研究生水平的材料。关于多元分析的理论研究,作者发表了一篇关于带状多项式的综述论文,继续他在这方面的研究。在与Yo Sheena的联合论文中,作者发表了一篇关于多元正态总体协方差矩阵估计中正交不变估计的可接受性的论文。关于协方差矩阵的相等性检验,作者给出了似然比检验的详细分解。为了研究多元正态性,本文在正交不变性的框架下讨论了联合高阶矩,导出了最大不变量。基于不变三阶矩,提出了一种多元正态性检验方法。因此,本项目在多元分析方面取得了有益的结果。另一方面,本项目尚未按计划取得关于多元时间序列模型及其在经济分析中的应用的具体成果。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Akimichi TAKEMURA: "Zonal polynomials in multivariate statistical anaiysis" Sugaku expositions. 4. 83-96 (1991)
Akimichi TAKEMURA:“多元统计分析中的区域多项式”Sugaku 阐述。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
竹村 彰通: "多変量推測統計の基礎" 共立出版, 280 (1991)
Akimichi Takemura:“多元推论统计基础”Kyoritsu Shuppan,280 (1991)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Akimichi Takemura.: Soubunsha, Tokyo, Japan.Modern Mathematical Statistics., 347 (1991)
Akimichi Takemura.:Soubunsha,东京,日本。现代数学统计。,347(1991)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Takemura: "Maximally or thogonally invariant higtr order moments and their application to elliptically-contouredness." To appear in Proceedings of the 3rd Pocific Area Statistical Conference.
A.Takemura:“最大或正交不变的高阶矩及其在椭圆轮廓上的应用。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
竹村 彰通: "現代数理統計学" 創文社, 347 (1991)
竹村秋道:《现代数理统计》总文社,347(1991)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKEMURA Akimichi其他文献

TAKEMURA Akimichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKEMURA Akimichi', 18)}}的其他基金

Developments of mathematical statistics through computational algebraic methods
通过计算代数方法发展数理统计
  • 批准号:
    22240029
  • 财政年份:
    2010
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Study of prediction theory based on game-theoretic probability
基于博弈概率的预测理论研究
  • 批准号:
    22650057
  • 财政年份:
    2010
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Developments of computational algebraic statistics
计算代数统计的发展
  • 批准号:
    18200019
  • 财政年份:
    2006
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Studies on disclosure control of microdata and statistical analysis of disclosed data
微观数据披露控制及披露数据统计分析研究
  • 批准号:
    14208023
  • 财政年份:
    2002
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Local disclosure control techniques of statistical microdata sets
统计微观数据集的本地披露控制技术
  • 批准号:
    11558026
  • 财政年份:
    1999
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Statistical Inference on cross sectionally contoured distributions
横截面轮廓分布的统计推断
  • 批准号:
    10680313
  • 财政年份:
    1998
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Decision theoretic approach to computer intensive methods of multivariate analysis
多变量分析计算机密集方法的决策理论方法
  • 批准号:
    08680327
  • 财政年份:
    1996
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ideas and Developments in Various Fields of Mathematical Statistics
数理统计各领域的思想与发展
  • 批准号:
    05301105
  • 财政年份:
    1993
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)

相似海外基金

Researches on the statistical power of the likelihood ratio test in the cohort-based nested case-control data analyses
基于队列的嵌套病例对照数据分析中似然比检验的统计功效研究
  • 批准号:
    21500279
  • 财政年份:
    2009
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了