Statistical Inference on cross sectionally contoured distributions
横截面轮廓分布的统计推断
基本信息
- 批准号:10680313
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research we have obtained some important results concerning the theory of cross sectionally contoured distributions and related problems of statistical inference. Takemura and Kamiya have separately published a survey papers (in Japanese) in Proceedings of the Institute of Statistical Mathematics, Vol. 47, No. 1 (1999).Takemura with coauthor Satoshi Kuriki gives a survey on the tube method and the Euler characteristic method for obtaining the tail probability of the maximum of Gaussian field. This methodology is a topic of intense current research. Kamiya has developed a characterization of invariant probability models based on the functional form of the density function.Some other results include the discussion paper by Kamiya and Takemura :"Rankings generated by spherical discriminant analysis", Discussion Paper CIRJE-F-15, Faculty of Economics, Univ. of Tokyo (1998), which is going to appear in the Journal of the Japan Statistical Society.Takemura with coauthor Kuriki published a paper on principal component analysis in Communications in Statistics.
在这项研究中,我们获得了一些重要的结果,横截面轮廓分布理论和相关的统计推断问题。Takemura和Kamiya分别在Proceedings of the Institute of Statistical Mathematics,Vol.47,No.1(1999)上发表了一篇综述性论文(日文),Takemura与合著者Satoshi Kuriki综述了求高斯场最大值尾概率的管方法和欧拉特征线方法。这种方法是当前研究的热点。神谷研究了基于密度函数的函数形式的不变概率模型的特征。其他成果包括神谷和武村的讨论论文:“Rankings generated by spherical discriminant analysis”,Discussion Paper CIRJE-F-15,Faculty of Economics,Univ. of Tokyo(1998),这篇论文将发表在Journal of the Japan Statistical Society上。武村与合著者栗木在Communications in Statistics上发表了一篇关于主成分分析的论文。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Satoshi Kuriki and Akimichi Takemura: "Distribution of the maximum of Gaussian random field : tube method and Euler characteristic method. (in Japanese)"Proceedings of the Institute of Statistical Mathematics. Vol. 47. 201-221 (1999)
Satoshi Kuriki 和 Akimichi Takemura:“高斯随机场最大值的分布:管法和欧拉特征法。(日语)”统计数学研究所论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
紙屋英彦: "不変確率モデルの特徴付け"統計数理. 47・1. 63-69 (1999)
神谷秀彦:“不变概率模型的表征”统计数学 47・1(1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hidehiko Kamiya and Akimichi Takemura: "Rankings generated by spherical discriminant analysis"Journal of the Japan Statistical Society. (印刷中).
Hidehiko Kamiya 和 Akimichi Takemura:“通过球形判别分析生成的排名”日本统计学会杂志(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Akimichi Takemura and Satoshi Kuriki: "Shrinkage to smooth non-convex cone : principal component analysis as Stein estimation"Commun. Statist. - Theory Meth.. Vol. 28. 651-669 (1999)
Akimichi Takemura 和 Satoshi Kuriki:“平滑非凸锥体的收缩:斯坦因估计的主成分分析”Commun。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kamiya,H.and Eguchi,S.: "A class of robust principal component vectors" Research Memorandum No.699 Institute of Statistical Mathematics October. (1998)
Kamiya,H. 和 Eguchi,S.:“一类稳健主成分向量”研究备忘录第 699 号统计数学研究所 10 月。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKEMURA Akimichi其他文献
TAKEMURA Akimichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAKEMURA Akimichi', 18)}}的其他基金
Developments of mathematical statistics through computational algebraic methods
通过计算代数方法发展数理统计
- 批准号:
22240029 - 财政年份:2010
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Study of prediction theory based on game-theoretic probability
基于博弈概率的预测理论研究
- 批准号:
22650057 - 财政年份:2010
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Developments of computational algebraic statistics
计算代数统计的发展
- 批准号:
18200019 - 财政年份:2006
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Studies on disclosure control of microdata and statistical analysis of disclosed data
微观数据披露控制及披露数据统计分析研究
- 批准号:
14208023 - 财政年份:2002
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Local disclosure control techniques of statistical microdata sets
统计微观数据集的本地披露控制技术
- 批准号:
11558026 - 财政年份:1999
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Decision theoretic approach to computer intensive methods of multivariate analysis
多变量分析计算机密集方法的决策理论方法
- 批准号:
08680327 - 财政年份:1996
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ideas and Developments in Various Fields of Mathematical Statistics
数理统计各领域的思想与发展
- 批准号:
05301105 - 财政年份:1993
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
Study of the theory of statistical multivariate analysis and its application to economic analysis
统计多元分析理论及其在经济分析中的应用研究
- 批准号:
02630011 - 财政年份:1990
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Scale invariance: A new paradigm for particle physics and cosmology
尺度不变性:粒子物理学和宇宙学的新范式
- 批准号:
DP220101721 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Projects
Conformal Field Theories with Higher Spin Symmetry and Duality Invariance
具有更高自旋对称性和对偶不变性的共形场论
- 批准号:
DP230101629 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Projects
EAR-PF: Are large earthquakes like small earthquakes? Using synthetic earthquakes to resolve discrepancies in observations of earthquake stress drop magnitude-invariance
EAR-PF:大地震和小地震一样吗?
- 批准号:
2204102 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Fellowship Award
RI: Small: Understanding the Inductive Bias Caused by Invariance and Multi Scale in Neural Networks
RI:小:理解神经网络中不变性和多尺度引起的归纳偏差
- 批准号:
2213335 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Treeings, quasi-invariance, and ergodic combinatorics
树、拟不变性和遍历组合学
- 批准号:
RGPIN-2020-07120 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Universality and conformal invariance of certain two dimensional statistical physics models
某些二维统计物理模型的普遍性和共形不变性
- 批准号:
RGPIN-2018-04122 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2021
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Universality and conformal invariance of certain two dimensional statistical physics models
某些二维统计物理模型的普遍性和共形不变性
- 批准号:
RGPIN-2018-04122 - 财政年份:2021
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Treeings, quasi-invariance, and ergodic combinatorics
树、拟不变性和遍历组合学
- 批准号:
RGPIN-2020-07120 - 财政年份:2021
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual