Statistical Inference on cross sectionally contoured distributions

横截面轮廓分布的统计推断

基本信息

  • 批准号:
    10680313
  • 负责人:
  • 金额:
    $ 1.92万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 1999
  • 项目状态:
    已结题

项目摘要

In this research we have obtained some important results concerning the theory of cross sectionally contoured distributions and related problems of statistical inference. Takemura and Kamiya have separately published a survey papers (in Japanese) in Proceedings of the Institute of Statistical Mathematics, Vol. 47, No. 1 (1999).Takemura with coauthor Satoshi Kuriki gives a survey on the tube method and the Euler characteristic method for obtaining the tail probability of the maximum of Gaussian field. This methodology is a topic of intense current research. Kamiya has developed a characterization of invariant probability models based on the functional form of the density function.Some other results include the discussion paper by Kamiya and Takemura :"Rankings generated by spherical discriminant analysis", Discussion Paper CIRJE-F-15, Faculty of Economics, Univ. of Tokyo (1998), which is going to appear in the Journal of the Japan Statistical Society.Takemura with coauthor Kuriki published a paper on principal component analysis in Communications in Statistics.
在这项研究中,我们获得了一些重要的结果,横截面轮廓分布理论和相关的统计推断问题。Takemura和Kamiya分别在Proceedings of the Institute of Statistical Mathematics,Vol.47,No.1(1999)上发表了一篇综述性论文(日文),Takemura与合著者Satoshi Kuriki综述了求高斯场最大值尾概率的管方法和欧拉特征线方法。这种方法是当前研究的热点。神谷研究了基于密度函数的函数形式的不变概率模型的特征。其他成果包括神谷和武村的讨论论文:“Rankings generated by spherical discriminant analysis”,Discussion Paper CIRJE-F-15,Faculty of Economics,Univ. of Tokyo(1998),这篇论文将发表在Journal of the Japan Statistical Society上。武村与合著者栗木在Communications in Statistics上发表了一篇关于主成分分析的论文。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Satoshi Kuriki and Akimichi Takemura: "Distribution of the maximum of Gaussian random field : tube method and Euler characteristic method. (in Japanese)"Proceedings of the Institute of Statistical Mathematics. Vol. 47. 201-221 (1999)
Satoshi Kuriki 和 Akimichi Takemura:“高斯随机场最大值的分布:管法和欧拉特征法。(日语)”统计数学研究所论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
紙屋英彦: "不変確率モデルの特徴付け"統計数理. 47・1. 63-69 (1999)
神谷秀彦:“不变概率模型的表征”统计数学 47・1(1999)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hidehiko Kamiya and Akimichi Takemura: "Rankings generated by spherical discriminant analysis"Journal of the Japan Statistical Society. (印刷中).
Hidehiko Kamiya 和 Akimichi Takemura:“通过球形判别分析生成的排名”日本统计学会杂志(正在出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Akimichi Takemura and Satoshi Kuriki: "Shrinkage to smooth non-convex cone : principal component analysis as Stein estimation"Commun. Statist. - Theory Meth.. Vol. 28. 651-669 (1999)
Akimichi Takemura 和 Satoshi Kuriki:“平滑非凸锥体的收缩:斯坦因估计的主成分分析”Commun。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kamiya,H.and Eguchi,S.: "A class of robust principal component vectors" Research Memorandum No.699 Institute of Statistical Mathematics October. (1998)
Kamiya,H. 和 Eguchi,S.:“一类稳健主成分向量”研究备忘录第 699 号统计数学研究所 10 月。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKEMURA Akimichi其他文献

TAKEMURA Akimichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKEMURA Akimichi', 18)}}的其他基金

Developments of mathematical statistics through computational algebraic methods
通过计算代数方法发展数理统计
  • 批准号:
    22240029
  • 财政年份:
    2010
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Study of prediction theory based on game-theoretic probability
基于博弈概率的预测理论研究
  • 批准号:
    22650057
  • 财政年份:
    2010
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Developments of computational algebraic statistics
计算代数统计的发展
  • 批准号:
    18200019
  • 财政年份:
    2006
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Studies on disclosure control of microdata and statistical analysis of disclosed data
微观数据披露控制及披露数据统计分析研究
  • 批准号:
    14208023
  • 财政年份:
    2002
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Local disclosure control techniques of statistical microdata sets
统计微观数据集的本地披露控制技术
  • 批准号:
    11558026
  • 财政年份:
    1999
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Decision theoretic approach to computer intensive methods of multivariate analysis
多变量分析计算机密集方法的决策理论方法
  • 批准号:
    08680327
  • 财政年份:
    1996
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ideas and Developments in Various Fields of Mathematical Statistics
数理统计各领域的思想与发展
  • 批准号:
    05301105
  • 财政年份:
    1993
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
Study of the theory of statistical multivariate analysis and its application to economic analysis
统计多元分析理论及其在经济分析中的应用研究
  • 批准号:
    02630011
  • 财政年份:
    1990
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Scale invariance: A new paradigm for particle physics and cosmology
尺度不变性:粒子物理学和宇宙学的新范式
  • 批准号:
    DP220101721
  • 财政年份:
    2023
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Discovery Projects
Conformal Field Theories with Higher Spin Symmetry and Duality Invariance
具有更高自旋对称性和对偶不变性的共形场论
  • 批准号:
    DP230101629
  • 财政年份:
    2023
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Discovery Projects
EAR-PF: Are large earthquakes like small earthquakes? Using synthetic earthquakes to resolve discrepancies in observations of earthquake stress drop magnitude-invariance
EAR-PF:大地震和小地震一样吗?
  • 批准号:
    2204102
  • 财政年份:
    2022
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Fellowship Award
RI: Small: Understanding the Inductive Bias Caused by Invariance and Multi Scale in Neural Networks
RI:小:理解神经网络中不变性和多尺度引起的归纳偏差
  • 批准号:
    2213335
  • 财政年份:
    2022
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Standard Grant
Treeings, quasi-invariance, and ergodic combinatorics
树、拟不变性和遍历组合学
  • 批准号:
    RGPIN-2020-07120
  • 财政年份:
    2022
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
  • 批准号:
    RGPIN-2018-05052
  • 财政年份:
    2022
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Discovery Grants Program - Individual
Universality and conformal invariance of certain two dimensional statistical physics models
某些二维统计物理模型的普遍性和共形不变性
  • 批准号:
    RGPIN-2018-04122
  • 财政年份:
    2022
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
  • 批准号:
    RGPIN-2018-05052
  • 财政年份:
    2021
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Discovery Grants Program - Individual
Universality and conformal invariance of certain two dimensional statistical physics models
某些二维统计物理模型的普遍性和共形不变性
  • 批准号:
    RGPIN-2018-04122
  • 财政年份:
    2021
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Discovery Grants Program - Individual
Treeings, quasi-invariance, and ergodic combinatorics
树、拟不变性和遍历组合学
  • 批准号:
    RGPIN-2020-07120
  • 财政年份:
    2021
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了