Decision theoretic approach to computer intensive methods of multivariate analysis

多变量分析计算机密集方法的决策理论方法

基本信息

  • 批准号:
    08680327
  • 负责人:
  • 金额:
    $ 1.54万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 1997
  • 项目状态:
    已结题

项目摘要

First we summarize research results by the head investigator Akimichi Takemura. He has published with the co-author Satoshi Kuriki the paper "A proof of independent Bartlett correctability of nested likelihood ratio tests" in Annals of Institute of Statistical Mathematics. This paper proves that the likelihood ratio statistics for nested hypotheses can be Bartlett-corrected independently of each other. His paper with the co-author Toshio Honda "The effect of heteroscedasticity on the actual size of Chow test" appeared in Journal of the Japan Statistical Society. In this paper he has obtained results on the actual signigicance levels of the test of structural change (Chow test), when the error terms of the regression model has heteroscedasticity. His paper with Hidehiko Kamiya titled "On rankings generated by pairwise linear discriminant analysis of m populations" appeated in the Journal of Multivariate Analysis. This paper investigates the number of rankings and properties of non-appearing rankings in detail based on the theory of hyperplane arrangements. His most recent publication "Weights of chi distribution for smooth or piecewise smooth cone alternattives. The annals of statistics" in the Annals of Statistics investigates the weights of chi-bar-squared distribution for smooth convex cone alternatives using differential geometric methods.Next we summarize research results by Tatsuya Kubokawa. His paper with M.S.Srivastava titled "Double shrinkage estimators of ratio of variances" appeared in the Proceedings of the Sixth Eugene Lukacs Symposium. This paper gives a new shrinkage estimator for the ratio of variances. Furthermore "Shrinkage estimators in a mixed MANOVA and GMANOVA model" by Y.Kubokawa, and A.K.Md.E.Saleh compares shrinkage estimators in Multivariate Analysis Variance Model and its generalizations.
首先,我们总结了首席研究员竹村明美的研究成果。他与合著者栗木聪在《统计数学研究所年鉴》上发表了论文《嵌套似然比检验的独立Bartlett可校正性证明》。本文证明了嵌套假设的似然比统计量可以相互独立地进行Bartlett校正。他与合著者本田俊夫的论文《异方差对周检验实际大小的影响》发表在《日本统计学会杂志》上。本文在回归模型误差项具有异方差的情况下,得到了结构变化检验(Chow检验)的实际显著水平的结果。他与神谷英彦的论文题为《关于m个人口的成对线性判别分析产生的排名》,发表在《多元分析杂志》上。本文以超平面排列理论为基础,详细研究了非出现排序的个数和性质。他最近在《统计年鉴》上发表的文章《光滑或分段光滑锥交替的卡方分布的权重.统计年鉴》用微分几何方法研究了光滑凸锥备选的卡方分布的权重。下面我们总结久保川的研究结果。他与斯里瓦斯塔瓦共同撰写的题为《方差比的双收缩估计器》的论文发表在第六届尤金·卢卡奇研讨会论文集上。本文给出了方差比的一种新的收缩估计。此外,Y.Kubokawa和A.K.M.E.Saleh在《混合Manova和GMANOVA模型中的收缩估计》中比较了多元分析方差模型及其推广中的收缩估计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Akimichi Takemura and Satoshi Kuriki: "A proof of independent Bartlett correctability of nested likelihood ratio tests" Annals of Institute of Statistical Mathematics. 48. 603-620 (1996)
Akimichi Takemura 和 Satoshi Kuriki:“嵌套似然比检验的独立 Bartlett 可校正性的证明”统计数学研究所年鉴。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.konno, T.Kubokawa and A.K.Md.E.Saleh: ""Shrinkage estimators in a mixed MANOVA and GMANOVA model."" Statistics and Decisions. Vol.15. 37-49 (1997)
Y.konno、T.Kubokawa 和 A.K.Md.E.Saleh:“混合 MANOVA 和 GMANOVA 模型中的收缩估计器。”统计和决策。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Akimichi Takemura and Satoshi Kuriki: "Weights of chi2 distribution for smooth or piecewise smooth cone alternatives" The annals of Statistics. 25. (1997)
Akimichi Takemura 和 Satoshi Kuriki:“平滑或分段平滑圆锥替代方案的 chi2 分布权重”统计年鉴。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Akimichi Takemura and Hidehiko Kamiya: "On rankings generated by pairwise linear discrlminant analysis of m populations" Journal of Multivariate Analysis. 61. 1-28 (1997)
Akimichi Takemura 和 Hidehiko Kamiya:“关于 m 个群体的成对线性判别分析生成的排名”多元分析杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Akimichi Takemura and Toshio Honda: "The effect of heteroscedasticity on the actual size of Chow test" Journal of the Japan Statistical Society. 26. 127-134 (1996)
Akimichi Takemura 和 Toshio Honda:“异方差性对 Chow 检验实际大小的影响”日本统计学会杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKEMURA Akimichi其他文献

TAKEMURA Akimichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKEMURA Akimichi', 18)}}的其他基金

Developments of mathematical statistics through computational algebraic methods
通过计算代数方法发展数理统计
  • 批准号:
    22240029
  • 财政年份:
    2010
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Study of prediction theory based on game-theoretic probability
基于博弈概率的预测理论研究
  • 批准号:
    22650057
  • 财政年份:
    2010
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Developments of computational algebraic statistics
计算代数统计的发展
  • 批准号:
    18200019
  • 财政年份:
    2006
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Studies on disclosure control of microdata and statistical analysis of disclosed data
微观数据披露控制及披露数据统计分析研究
  • 批准号:
    14208023
  • 财政年份:
    2002
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Local disclosure control techniques of statistical microdata sets
统计微观数据集的本地披露控制技术
  • 批准号:
    11558026
  • 财政年份:
    1999
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Statistical Inference on cross sectionally contoured distributions
横截面轮廓分布的统计推断
  • 批准号:
    10680313
  • 财政年份:
    1998
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ideas and Developments in Various Fields of Mathematical Statistics
数理统计各领域的思想与发展
  • 批准号:
    05301105
  • 财政年份:
    1993
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
Study of the theory of statistical multivariate analysis and its application to economic analysis
统计多元分析理论及其在经济分析中的应用研究
  • 批准号:
    02630011
  • 财政年份:
    1990
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Inactivation of Escherichia coli using high hydrostatic pressure from viewpoints of cell shrinkage and expansion
从细胞收缩和扩张的角度利用高静水压灭活大肠杆菌
  • 批准号:
    23K05105
  • 财政年份:
    2023
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Novel retail shrinkage/theft prevention approach for scan-&-go self checkout
用于扫描的新型零售防缩/防盗方法
  • 批准号:
    10055849
  • 财政年份:
    2023
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Collaborative R&D
Eco-friendly low shrinkage concrete integrating upcycled textile waste
结合升级回收纺织废料的环保低收缩混凝土
  • 批准号:
    DE230101221
  • 财政年份:
    2023
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Discovery Early Career Researcher Award
Modeling of Shrinkage Behavior of Polymers
聚合物收缩行为的建模
  • 批准号:
    23H01142
  • 财政年份:
    2023
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Uniquely high conversion and mechanically robust composite restorative materials for functionally elevated performance
独特的高转化率和机械坚固的复合修复材料,可提高功能性能
  • 批准号:
    10646845
  • 财政年份:
    2023
  • 资助金额:
    $ 1.54万
  • 项目类别:
Penalty, non-penalty shrinkage and ensemble methods for low and high dimensional data
低维和高维数据的惩罚、非惩罚收缩和集成方法
  • 批准号:
    RGPIN-2019-04101
  • 财政年份:
    2022
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Discovery Grants Program - Individual
Pretest and shrinkage estimation methods for joint modeling of linear mixed models and the AFT model
线性混合模型和AFT模型联合建模的预测试和收缩估计方法
  • 批准号:
    573853-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.54万
  • 项目类别:
    University Undergraduate Student Research Awards
Adaptive Dependent Data Models via Graph-Informed Shrinkage and Sparsity
通过图通知收缩和稀疏性的自适应相关数据模型
  • 批准号:
    2214726
  • 财政年份:
    2022
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Standard Grant
Regulatory mechanism of adipose shrinkage on chronic inflammation
脂肪收缩对慢性炎症的调节机制
  • 批准号:
    22K19433
  • 财政年份:
    2022
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Balancing Tourism and Conservation in Era of Climate Change and Shrinkage: Land Use Maps as a Boundary Object
在气候变化和收缩时代平衡旅游和保护:土地利用图作为边界对象
  • 批准号:
    22H03852
  • 财政年份:
    2022
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了