Development of 3-D Numerical Analysis and Applications
3-D 数值分析和应用的开发
基本信息
- 批准号:04045036
- 负责人:
- 金额:$ 2.88万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for international Scientific Research
- 财政年份:1992
- 资助国家:日本
- 起止时间:1992 至 1993
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Various methods for analyzing 3-D magnetic fields are developed, and calculation methods of force and torque are verified by comparing with measurement. The results obtained can be summarized as follows :1.Development of Softwares for Calculating 3-D Magnetic Field(1)The finite element formulations of various methods(A-phi, T-OMEGA) are investigated.(2)The CPU time for edge element is shorter than that for nodal element.(3)The convergence of nonlinear iteration of Newton-Raphson method is improved by introducing the nonlinear programming technique.(4)Method for analyzing eddy current in moving conductor is investigated.(5)3-D time-periodic finite element method is developed.2.Verification of Calculation Methods of Force and TorqueThe force and torque of verification models are analyzed, and the accuracies of calculation methods of force and torque are compared each other.3.Development of Optimal Design MethodOptimal design method which determines the size and shape of electrical machinery is developed by combining the finite element method and the nonlinear programming method.4.Development of 3-D Pre-and Post-ProcessorsThe user friendly 3-D mesh generator and post-processor for finite element analysis are developed.
发展了三维磁场分析的各种方法,并通过与测量结果的比较,验证了力和力矩的计算方法。1.三维磁场计算软件的开发(1)研究了各种方法(A-phi,T-OMEGA)的有限元列式。(2)边单元的计算时间比节点单元短。(3)通过引入非线性规划技术,改进了Newton-Raphson法非线性迭代的收敛性。(4)研究了运动导体中涡流的分析方法。(5)建立了三维时间周期有限元法。2.力和扭矩计算方法的验证对验证模型的力和扭矩进行了分析,3.优化设计方法的发展将有限元法与非线性有限元法相结合,提出了确定电机尺寸和形状的优化设计方法4.三维前、后处理程序的开发了用户友好的三维有限元网格生成器和后处理程序。
项目成果
期刊论文数量(68)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
中田高義,高橋則雄,藤原耕二: "A Simple Algorithm for Adaptive Refinement of Tetrahedral Meshes Combined with Edge Elements" IEEE Trans.on Magnetics. 29. 1898-1901 (1993)
Takayoshi Nakata、Norio Takahashi、Koji Fujiwara:“与边缘元素相结合的四面体网格自适应细化的简单算法”IEEE Trans.on Magnetics 29. 1898-1901 (1993)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
J.L.Coulomb,G.Meunier: "Use of the Diffuse Element Method for Electromagnetic Field Computation" IEEE Transactions on Magnetics. 29. 1475-1478 (1993)
J.L.Coulomb、G.Meunier:“电磁场计算中扩散元方法的使用”IEEE 磁学汇刊。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
中田高義,高橋則雄,藤原耕二: "Analysis of 3-D Nonlinear Eddy Current Problem by Time-Periodic Finite Element Method" Proceedings of CEFC. (1994)
Takayoshi Nakata、Norio Takahashi、Koji Fujiwara:“利用时间周期有限元法分析 3-D 非线性涡流问题”CEFC 论文集(1994 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
J.L.Coulomb: "Nonlinear Optimization Methods Applied to Magnetic Actuators Design" IEEE Trans. on Magnetics. 28. 1581-1584 (1992)
J.L.Coulomb:“应用于磁致动器设计的非线性优化方法”IEEE Trans。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Fujiwara and T.Nakata: "Method for Determining Relaxation Factor for Modified Newton-Raphson Method" IEEE Trans. on Magnetics. 29. 1862-1865 (1993)
K.Fujiwara 和 T.Nakata:“确定改进牛顿拉夫森法松弛因子的方法”IEEE Trans。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAKATA Takayoshi其他文献
NAKATA Takayoshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAKATA Takayoshi', 18)}}的其他基金
Standard measuring method of amorphous magnetic materials
非晶磁性材料标准测量方法
- 批准号:
09044184 - 财政年份:1997
- 资助金额:
$ 2.88万 - 项目类别:
Grant-in-Aid for international Scientific Research
Efficient Use of Steels and Development of Low Loss Machines
钢材的有效利用和低损耗机器的开发
- 批准号:
06045031 - 财政年份:1994
- 资助金额:
$ 2.88万 - 项目类别:
Grant-in-Aid for international Scientific Research
Development of Single Sheet Tester for Measuring Magnetic Characteristics of Amorphous Magnetic Metals
非晶磁性金属磁特性单片测试仪的研制
- 批准号:
06555080 - 财政年份:1994
- 资助金额:
$ 2.88万 - 项目类别:
Grant-in-Aid for Developmental Scientific Research (B)
Development of Methods for Analyzing Eddy Currents in Moving Conductors and Verification
移动导体涡流分析方法的开发和验证
- 批准号:
06452201 - 财政年份:1994
- 资助金额:
$ 2.88万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Verification of Softwares for 3-D Eddy Current Analysis
3D 涡流分析软件验证
- 批准号:
01302031 - 财政年份:1989
- 资助金额:
$ 2.88万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
Development of Nd-Fe-B Magnet Generator for Small Hydraulic Power Station
小型水电站用钕铁硼永磁发电机的研制
- 批准号:
62550207 - 财政年份:1987
- 资助金额:
$ 2.88万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Development of Program of 3-D Finite Element Method for Analyzing Magnetic Fields in Electrical Machines Excited from Voltage Sources
开发用于分析电压源激励电机中磁场的 3-D 有限元方法程序
- 批准号:
62850046 - 财政年份:1987
- 资助金额:
$ 2.88万 - 项目类别:
Grant-in-Aid for Developmental Scientific Research
相似海外基金
Development of a Hybrid Stochastic Finite Element Method with Enhanced Versatility for Uncertainty Quantification
开发一种增强通用性的混合随机有限元方法,用于不确定性量化
- 批准号:
23K04012 - 财政年份:2023
- 资助金额:
$ 2.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of component-based finite element method in connection design
连接设计中基于组件的有限元方法的评估
- 批准号:
573136-2022 - 财政年份:2022
- 资助金额:
$ 2.88万 - 项目类别:
University Undergraduate Student Research Awards
Real-time finite element method for interactive design
交互式设计的实时有限元方法
- 批准号:
2795756 - 财政年份:2022
- 资助金额:
$ 2.88万 - 项目类别:
Studentship
Influence line analysis suitable for finite element method: toward improving efficiency of structural design
适用于有限元法的影响线分析:提高结构设计效率
- 批准号:
22K04278 - 财政年份:2022
- 资助金额:
$ 2.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The High-Order Shifted Boundary Method: A Finite Element Method for Complex Geometries without Boundary-Fitted Grids
高阶移位边界法:一种用于无边界拟合网格的复杂几何形状的有限元方法
- 批准号:
2207164 - 财政年份:2022
- 资助金额:
$ 2.88万 - 项目类别:
Continuing Grant
A Novel Finite Element Method Toolbox for Interface Phenomena in Plasmonic Structures
用于等离子体结构界面现象的新型有限元方法工具箱
- 批准号:
2009366 - 财政年份:2020
- 资助金额:
$ 2.88万 - 项目类别:
Standard Grant
A Fitted Finite Element Method for the Modeling of Complex Materials
复杂材料建模的拟合有限元方法
- 批准号:
2012285 - 财政年份:2020
- 资助金额:
$ 2.88万 - 项目类别:
Continuing Grant
Analysis of mechanical effect of Hotz plate on maxillary growth in cleft children using finite element method
Hotz钢板对唇裂儿童上颌骨生长力学效应的有限元分析
- 批准号:
20K10160 - 财政年份:2020
- 资助金额:
$ 2.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Long-term structural performance assessment of corroded reinforced concrete structures using an integrated approach of probabilistic and finite element method
使用概率和有限元方法综合方法评估腐蚀钢筋混凝土结构的长期结构性能
- 批准号:
19K15078 - 财政年份:2019
- 资助金额:
$ 2.88万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A vorticity preserving finite element method for the compressible Euler equations on unstructured grids
非结构网格上可压缩欧拉方程的保涡有限元法
- 批准号:
429491391 - 财政年份:2019
- 资助金额:
$ 2.88万 - 项目类别:
Research Fellowships