Intelligent data base for grinding processes

磨削过程智能数据库

基本信息

  • 批准号:
    05402031
  • 负责人:
  • 金额:
    $ 9.92万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (A)
  • 财政年份:
    1993
  • 资助国家:
    日本
  • 起止时间:
    1993 至 1994
  • 项目状态:
    已结题

项目摘要

The purpose of this study is to establish an intelligent learning model which can imitate the decision making process of skilled operators for setting up the grinding parameters. The function of the system is to provide both the dressing condition and the grinding condition which can achieve the required surface roughness and the specific grinding energy. The specific grinding energy has a decisive influence on the occurrence of grinding burn. Therefore, it is an important output to be observed.In order to establish such intelligent learning model, we employs the neural network to imitate the associative memory of operators. The operator must adopt the grinding conditions with which he could achieve successful results in his experiences. Such process is imitated in our system by applying two different types of neural network i.e., a conventional Feed Forward Network and a Brain-State-in-a-Box Network. These two networks were combined into a hybrid network to imitate the associative memory of operators. The system is able to provide a combination of dressing and grinding condition which can meet the required surface roughness. The effectiveness of the proposed system was confirmed through a series of computer simulations.The second system proposed has an ability to imitate the learning function of operators. In order to achieve such function, we applied a genetic algorithm and a fuzzy rule. The system can learn causalities between the input and the output in the grinding process through practical operations. The system can, consequently, establish a grinding data base. The availability of the system was confirmed through both the computer simulations and the practical grinding experiments.
本研究的目的是建立一个智能学习模型,模拟熟练操作人员设置磨削参数的决策过程。该系统的功能是提供修整条件和磨削条件,以达到所需的表面粗糙度和比磨削能量。磨削比能对磨削烧伤的发生有决定性的影响。为了建立这样的智能学习模型,我们采用神经网络来模拟算子的联想记忆。操作员必须采用磨削条件,才能在他的经验中取得成功。在我们的系统中,通过应用两种不同类型的神经网络来模拟这一过程,即传统的前馈网络和大脑状态在盒中的网络。这两个网络被组合成一个混合网络,以模拟操作员的联想记忆。该系统能够提供修整和磨削的组合条件,满足所需的表面粗糙度。通过一系列计算机仿真验证了所提系统的有效性。第二种系统具有模拟操作员学习功能的能力。为了实现这一功能,我们应用了遗传算法和模糊规则。通过实际操作,该系统可以学习磨削过程中输入和输出之间的因果关系。因此,该系统可以建立磨削数据库。通过计算机仿真和实际磨削实验,验证了该系统的有效性。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
坂倉守昭: "研削加工の知識獲得の自動化に関する研究" 精密工学会秋季大会学術講演会論文集. 149-150 (1993)
Moriaki Sakakura:“磨削过程中知识获取自动化的研究”日本精密工程学会秋季会议记录149-150(1993)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
坂倉守昭: "研削プロセスの適応的因果関係モデル" 日本機械学会論文集(C編). 59-567. 321-326 (1993)
Moriaki Sakakura:“磨削过程的自适应因果模型”,日本机械工程师学会会议录(ed.C)59-567(1993 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Sakakura, I.Inasaki: "Automation of knowledge acquisition for grinding" Proc. of the Japan Society of Precision Engineers. 149-150 (1993)
M.Sakakura、I.Inasaki:“磨削知识获取自动化”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Sakakura, I.Inasaki: "Intelligent parameter set-up for grinding operations" Proc. of the JSGE. 319-320 (1994)
M.Sakakura、I.Inasaki:“磨削操作的智能参数设置”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
寺倉洋祐: "研削条件設定における学習モデルの研究" 砥粒加工学会学術講演会講演論文集. 203-204 (1993)
Yosuke Terakura:“设置磨削条件的学习模型的研究”磨料加工学会学术会议记录203-204(1993)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

INASAKI Ichiro其他文献

INASAKI Ichiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('INASAKI Ichiro', 18)}}的其他基金

Near dry cutting with ultra sonic vibration
超声波振动近干式切削
  • 批准号:
    18360072
  • 财政年份:
    2006
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Tribological approach to the analysis of near dry cutting mechanism
近干切削机理分析的摩擦学方法
  • 批准号:
    14205027
  • 财政年份:
    2002
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of high performance CFRP spindle for machine tool applications
开发用于机床应用的高性能 CFRP 主轴
  • 批准号:
    12450062
  • 财政年份:
    2000
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Clean Cutting with Oil-fog
油雾清洁切割
  • 批准号:
    11555045
  • 财政年份:
    1999
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Basic study on speed-stroke grinding with linear motor driven table system
直线电机驱动工作台系统速度行程磨削的基础研究
  • 批准号:
    10450061
  • 财政年份:
    1998
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Remote Diagnosis System of Machine Tool by Utilizing Network
利用网络开发机床远程诊断系统
  • 批准号:
    09555049
  • 财政年份:
    1997
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Machine Tool Table Systems with Variable Damper Mechanisms by Applying Electrorheological Fluids
应用电流变液开发具有可变阻尼机构的机床工作台系统
  • 批准号:
    07555044
  • 财政年份:
    1995
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Study on the form shaping theory for machine tools and its applications
机床成形理论及其应用研究
  • 批准号:
    05302031
  • 财政年份:
    1993
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
Development of the new technology of machining, measuring and control for advanced manufacturing system of metal molds
金属模具先进制造系统加工、测量与控制新技术开发
  • 批准号:
    02302041
  • 财政年份:
    1990
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
Development of Expert System for Grinding Operations
磨削作业专家系统的开发
  • 批准号:
    01460105
  • 财政年份:
    1989
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
  • 批准号:
    23K22068
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了