Numerical Schemes for Coupled Multi-Scale Problems
耦合多尺度问题的数值方案
基本信息
- 批准号:525842915
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Coupling of models on different scales has been ubiquitous in the mathematical modeling of real-world phenomena with a prominent example being the earth system models. Here models on different scales need to be coupled for a complete description of the process. The coupling procedure itself poses major challenges analytically as well as numerically. A suitable method should ensure that relevant properties are conserved across models and scales and an efficient numerical computation should be possible to allow for real-time simulations. Although the coupling of systems of balance laws has been successfully conducted in the past, they suffer from short-comings. A bulk of work has been performed in the one-dimensional case in the past decades in the context of networked problems for various fields, where a key concept in the development of analytical and numerical results has been the notion of Riemann solvers or half-Riemann problems at the coupling interface. The developed techniques require the analytical expression of the nonlinear wave curves which in many relevant models might not be explicitly available. This severely limits the use of those techniques. The developments have also been mirrored in numerical schemes that in almost all literature relies on the Riemann solver at the coupling point safe for some exceptions, they, however, do not translate to the relevant multi-scale case. Also, property preserving numerical methods for the coupling at the same scale are not available. Multi-dimensional extensions have so far been addressed by projection of the flux in normal direction leading to formally one-dimensional systems. Finally, the question of the coupling across scales has very recently gained interest but a general methodological approach and corresponding property preserving methods are still at large. The aim of this project is to develop numerical schemes for multi-scale coupled problems arising in nonlinear fluid dynamics. More specifically, we aim to develop schemes that do not rely on Riemann solvers at the coupling interface and allow for the extension to multi-scale and, with the perspective of turbulent flow, towards multi-dimensional settings. The development of the scheme is accompanied by theoretical analysis on its properties as well as an implementation for different scenarios described by (multi-dimensional) systems of hyperbolic balance laws and/or transport-dominated problems exhibiting multiple scales. We exemplify the developed, numerical method on systems of gas dynamics and a transpiration cooling problem. For this purpose, we first derive a relaxation approach for coupled transport problems relying on one relaxation parameter. This is followed by the investigation of extended properties of the relaxation systems with different relaxation velocities. Finally, the developed techniques are applied to different scenarios of multi-scale coupling.
在真实世界现象的数学建模中,不同尺度上的模型耦合是普遍存在的,地球系统模型就是一个突出的例子。在这里,需要将不同比例的模型耦合在一起,以完整地描述这一过程。耦合过程本身在分析和数值上都构成了重大挑战。一种合适的方法应该确保相关的性质在模型和尺度上是保守的,并且应该能够进行有效的数值计算以允许实时模拟。虽然平衡法律体系的耦合在过去取得了成功,但它们也存在不足。在过去的几十年里,在不同领域的网络问题的背景下,在一维情况下进行了大量的工作,其中在发展分析和数值结果中的一个关键概念是耦合界面上的黎曼解算器或半黎曼问题的概念。所发展的技术需要非线性波浪曲线的解析表达式,而这在许多相关模型中可能不是明确可用的。这严重限制了这些技术的使用。这些发展也反映在数值格式中,这些数值格式在几乎所有文献中都依赖于耦合点处的Riemann求解器,但在某些例外情况下,它们不能转化为相关的多尺度情况。此外,对于相同尺度下的耦合,也没有保持性质的数值方法。到目前为止,多维扩展已经通过在法线方向上投影导致形式上的一维系统的通量来解决。最后,跨尺度的耦合问题最近引起了人们的兴趣,但一般的方法论方法和相应的属性保存方法仍然很普遍。本项目的目的是为非线性流体力学中出现的多尺度耦合问题开发数值格式。更具体地说,我们的目标是开发不依赖于耦合界面上的Riemann解算器的方案,并允许扩展到多尺度,并从湍流的角度向多维环境扩展。该方案的发展伴随着对其性质的理论分析,以及对双曲平衡律的(多维)系统描述的不同场景的实现和/或呈现多尺度的交通支配问题的实现。我们以气体动力学系统和发汗冷却问题的数值方法为例进行了说明。为此,我们首先给出了依赖于一个松弛参数的耦合输运问题的松弛方法。然后研究了具有不同松弛速度的松弛系统的扩展性质。最后,将所开发的技术应用于不同的多尺度耦合场景。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Michael Herty其他文献
Professor Dr. Michael Herty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Michael Herty', 18)}}的其他基金
Basic evaluation for simulation-based crash-risk-models - multiscale modelling regarding dynamic traffic flow states
基于模拟的碰撞风险模型的基本评估 - 关于动态交通流状态的多尺度建模
- 批准号:
280497386 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Kinetic Models on Networks with Applications Traffic Flow and Supply Chains
具有应用流量和供应链的网络动力学模型
- 批准号:
79828029 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
Differentiable programming for flows with discontinuities
具有不连续性的流动的可微分规划
- 批准号:
513718742 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Random compressible Euler equations: Numerics and its Analysis
随机可压缩欧拉方程:数值及其分析
- 批准号:
525853336 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
New traffic models considering complex geometries and data
考虑复杂几何形状和数据的新交通模型
- 批准号:
461365406 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Assessment of Deep Learning through Meanfield Theory
通过平均场理论评估深度学习
- 批准号:
462234017 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
Mathematical analyses on one-bit secret sharing schemes and their extensions
一位秘密共享方案及其扩展的数学分析
- 批准号:
23K10979 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
The influence of fungal networks on the success of tree-planting schemes
真菌网络对植树计划成功的影响
- 批准号:
2898803 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Construction of Post-quantum Signature Schemes based on Lattices
基于格的后量子签名方案构建
- 批准号:
EP/X036669/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309547 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Building Predictive Coarse-Graining Schemes for Complex Microbial Ecosystems
为复杂的微生物生态系统构建预测粗粒度方案
- 批准号:
2310746 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Iwasawa theory of class group schemes in characteristic p
特征p中的类群方案岩泽理论
- 批准号:
2302072 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Research on Cryptographic Schemes with Probabilistically Decryptable Encryption Scheme
概率可解密加密方案的密码方案研究
- 批准号:
23K19952 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
- 批准号:
2309748 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Advanced inertial confinement fusion schemes
先进的惯性约束聚变方案
- 批准号:
2887053 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Fundamentals and applications of tropical schemes
热带计划的基础和应用
- 批准号:
EP/X02752X/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship