Kinetic Models on Networks with Applications Traffic Flow and Supply Chains
具有应用流量和供应链的网络动力学模型
基本信息
- 批准号:79828029
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2008
- 资助国家:德国
- 起止时间:2007-12-31 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Kinetic equations can provide a fine-scale description of a variety of physical processes. We are interested in physical systems where an additional network structure is present. Such systems have been studied in the context of traffic and production networks on a coarse-scale only. Coarse scale or macroscopic models are based on partial differential equations (PDEs) for averaged quantities whereas fine scale models are based on PDEs for distribution functions. Considering a network topology many processes on different arcs have to be coupled by suitable coupling conditions. In the case of macroscopic models their detailed form is a point of ongoing discussion. In this proposal we start from a kinetic description of Boltzmann type with applications in traffic flow, supply chains as well as gas dynamics. The kinetic equations describe the dynamics on the arcs on the finest possible scale. Coupling conditions for the dynamics at vertices arise naturally due to the linear structure of these equations. Besides the analysis of these coupled systems we are interested in the coupling conditions obtained by introducing averaged quantities at the vertex using moment closure relations. This introduces possible nonlinear macroscopic coupling conditions. We compare these newly obtained conditions with already known coupling conditions for the macroscopic models. Additionally, we include discrete decisions in the coupling conditions. These decisions can model for example instantaneous switching between different modes of operation or planning and design decisions. For the simulation of networks governed by kinetic models, coupling conditions and possibly discrete decisionSj we introduce an appropriate formulation by discretization and reformulation as mixed-integer programming problems. We give numerical results for traffic flow and supply chain applications and compare these results with existing macroscopic approaches. In particular, we discuss a multi-scale approach combining parts of the production process with highly nonlinear behavior and classical discretization concepts with the mixed-integer formulation.
动力学方程可以提供各种物理过程的精细描述。我们感兴趣的物理系统中存在一个额外的网络结构。此类系统仅在粗略规模的交通和生产网络背景下进行了研究。粗尺度或宏观模型是基于偏微分方程(PDE)的平均量,而细尺度模型是基于偏微分方程的分布函数。考虑到网络的拓扑结构,不同弧上的许多过程必须通过适当的耦合条件来耦合。在宏观模型的情况下,它们的详细形式是一个正在讨论的问题。在这个建议中,我们从玻尔兹曼类型的动力学描述开始,在交通流,供应链以及气体动力学中的应用。动力学方程以尽可能精细的尺度描述了弧上的动力学。由于这些方程的线性结构,顶点处的动力学的耦合条件自然出现。除了这些耦合系统的分析,我们感兴趣的耦合条件,通过引入平均量在顶点使用矩封闭关系。这引入了可能的非线性宏观耦合条件。我们比较这些新获得的条件与已知的宏观模型的耦合条件。此外,我们还在耦合条件中加入了离散决策。这些决策可以对不同操作模式或规划和设计决策之间的瞬时切换进行建模。对于动力学模型,耦合条件和可能的离散decisionSj网络的模拟,我们引入了一个适当的配方离散化和重新制定的混合整数规划问题。我们给出了交通流和供应链应用的数值结果,并将这些结果与现有的宏观方法进行比较。特别是,我们讨论了一个多尺度的方法相结合的部分生产过程中的高度非线性行为和经典的离散化概念与混合整数制定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Michael Herty其他文献
Professor Dr. Michael Herty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Michael Herty', 18)}}的其他基金
Basic evaluation for simulation-based crash-risk-models - multiscale modelling regarding dynamic traffic flow states
基于模拟的碰撞风险模型的基本评估 - 关于动态交通流状态的多尺度建模
- 批准号:
280497386 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Differentiable programming for flows with discontinuities
具有不连续性的流动的可微分规划
- 批准号:
513718742 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Numerical Schemes for Coupled Multi-Scale Problems
耦合多尺度问题的数值方案
- 批准号:
525842915 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
Random compressible Euler equations: Numerics and its Analysis
随机可压缩欧拉方程:数值及其分析
- 批准号:
525853336 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
New traffic models considering complex geometries and data
考虑复杂几何形状和数据的新交通模型
- 批准号:
461365406 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Assessment of Deep Learning through Meanfield Theory
通过平均场理论评估深度学习
- 批准号:
462234017 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Deep Neural Networks That Can See Shape From Images: Models, Algorithms, and Applications
职业:可以从图像中看到形状的深度神经网络:模型、算法和应用
- 批准号:
2239977 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
- 批准号:
2406648 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Developing Patient-Specific Models of Whole Brain Networks in Depression to Examine the Network Effects of Focal Neurostimulation
开发抑郁症患者的全脑网络模型以检查局灶神经刺激的网络效应
- 批准号:
489876 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Computational Models of Descending Pain Regulatory Networks in Chronic Pain
慢性疼痛中下行疼痛调节网络的计算模型
- 批准号:
2891554 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
The Influence of Climate, Social Networks, and Cultural Models on the Retention of Women and Racially/Ethnically Marginalized Engineers in Graduate School and the Workforce
气候、社交网络和文化模式对研究生院和劳动力中女性和种族/民族边缘化工程师保留的影响
- 批准号:
2301217 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Synthetic Reconstruction of Human Chaperone Networks in Yeast Models of Neurodegeneration
神经退行性酵母模型中人类伴侣网络的综合重建
- 批准号:
10591799 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
- 批准号:
10330130 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Incorporating self- and world-models in neural networks for flexible robot learning and control
将自我模型和世界模型结合到神经网络中以实现灵活的机器人学习和控制
- 批准号:
2784464 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Models and Inferences for Heterogeneous Interaction Patterns in Social Networks
社交网络中异构交互模式的模型和推论
- 批准号:
2210735 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Big Data Analytics: Optimization Models and Algorithms with Applications in Smart Food Supply Chains and Networks
大数据分析:优化模型和算法在智能食品供应链和网络中的应用
- 批准号:
RGPIN-2020-06792 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual