CO-OPERATIVE RESEARCH ON PROBABILITY THEORY

概率论合作研究

基本信息

  • 批准号:
    05302012
  • 负责人:
  • 金额:
    $ 11.84万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 无数据
  • 项目状态:
    已结题

项目摘要

As two years project from 1993 we carried out co-operative research on "Probability Theory and Related Topics" in co-operation with the joint researchers of this project and other researchers of the probability section of the Mathematical Society of Japan. First, aiming at futher development of theory of stochastic analysis which is most fundamental in modern probability theory, we organized two symposiums "Analysis on Wiener space" and "Stochastic Analysis". The former is originated by K.Ito and in the latter one a main theme is Dirichlet space theory due to M.Fukushima. In this field Japan is the leading country, and many pioneering works were produced motivated by these symposiums. We had also symposiums "Analysis related to Markov processes" and "Stochastic Analysis on Manifolds and Large Deviation Theory", which are related to analysis and geometry, jointly with invited analysts and geometricians. Based upon the discussions there new researchs were created. Furthermore, aiming at … More application of stochastic analysis to physics and biology we organized three symposiums "Stochastic Analysis in Physics and Biology", "Fractals and Related Fields" and "Infinite Particles Systems and Hydrodynamical LImit" in cooperation with phycists and biologists, and we could find out several fascinating mathematical problems. It has been proved that stochastic analysis is very powerful in the engineering involving control theory, mathematical economics such as finance theory and mathematical approach in sociology, for which we organized two symposiums "Stochastis Models in Applied Fields" and "Application of Stochastic Analysis". Moreover to discuss new results on miscellaneous problems of probability theory we organized "Gaussian and Stable Processes and their Applications", "Stochastic Processes and Related Fields", "Ergodic Theory and Related Fields", and "Summer School on Probability Theory". Stimulated by these symposiums many interesting results were produced, which are published as the report of research results by this grant. Less
从1993年开始,我们与该项目的联合研究人员和日本数学学会概率部分的其他研究人员合作,进行了为期两年的“概率论及相关主题”的合作研究。首先,针对现代概率论中最基本的随机分析理论的进一步发展,我们组织了“维纳空间分析”和“随机分析”两个专题讨论会。前者是由伊藤启一和后者的一个主要主题是狄利克雷空间理论由于M.在这一领域,日本是领先的国家,许多开创性的工作是在这些研讨会的推动下产生的。我们还与受邀的分析师和几何学家共同举办了与分析和几何相关的研讨会“与马尔可夫过程相关的分析”和“流形上的随机分析和大偏差理论”。在此基础上进行了新的研究。此外,针对 ...更多信息 随机分析在物理学和生物学中的应用我们与物理学家和生物学家合作组织了“物理学和生物学中的随机分析”、“分形及相关领域”和“无限粒子系统和流体动力学极限”三个专题讨论会,从中我们可以发现一些有趣的数学问题。随机分析在控制理论、金融理论等数理经济学和社会学中的数学方法等工程领域中的应用已被证明是非常强大的,为此我们组织了“随机模型在应用领域中的应用”和“随机分析的应用”两次研讨会。此外,为了讨论概率论杂项问题的新结果,我们组织了“高斯和稳定过程及其应用”,“随机过程和相关领域”,“遍历理论和相关领域”和“概率论暑期学校”。在这些研讨会的激励下,产生了许多有趣的结果,这些结果作为该基金的研究成果报告发表。少

项目成果

期刊论文数量(64)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
内山 耕平: "Scaling limits of interacting diffusions with arbitrary initial diotributions" Probability theory and Related Fields. (出版予定). (1994)
Kohei Uchiyama:“任意初始分布的扩散限制”概率论和相关领域(即将出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
真鍋 昭次郎,池田 信行,楠岡 成雄: "Levy's stochastic area formula for Gaussian processes" Comm.Pure and Appl.Math.47. (1994)
Shojiro Manabe、Nobuyuki Ikeda、Shigeo Kusuoka:“高斯过程的 Levy 随机面积公式”Comm.Pure 和 Appl.Math.47 (1994)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
熊谷 隆: "Estimates of transition densities for Brownian motion on nested fractals" Probab.Theory Relat.Fields. 96. 205-224 (1993)
Takashi Kumagai:“嵌套分形上布朗运动的过渡密度估计”Probab.Theory Relat.Fields 96. 205-224 (1993)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
服部公子,服部哲弥,渡辺浩: "Asymptotically one-dimensional diffusions on the Sierpinski gasket and the abc-gaskets" Probability Theory and Related Fields. (出版予定). (1994)
Kimiko Hattori、Tetsuya Hattori、Hiroshi Watanabe:“Sierpinski 垫片和 abc 垫片上的渐近一维扩散”概率论和相关领域(即将出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Matsumoto: "Semiclassical asympotics of eigenvalue distributions for Schrodinger operators with magnetic fields." Comm.PDE. Vol.19. 719-759 (1994)
H.Matsumoto:“具有磁场的薛定谔算子的特征值分布的半经典渐近性。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHIGA Tokuzo其他文献

SHIGA Tokuzo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHIGA Tokuzo', 18)}}的其他基金

ASYMPTOTICAL ANALYSIS FOR EXPONENTIAL FUNCTIONALS IN INFINITE DIMENSIONAL STOCHASTIC MODELS
无限维随机模型中指数泛函的渐近分析
  • 批准号:
    16540097
  • 财政年份:
    2004
  • 资助金额:
    $ 11.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
MATEMATICAL ANALYSIS OF INFINITE DIMENSIONAL STOCHASTIC MODELS
无维随机模型的数学分析
  • 批准号:
    13640103
  • 财政年份:
    2001
  • 资助金额:
    $ 11.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Infinite-dimensional Markovian Models
无限维马尔可夫模型分析
  • 批准号:
    11640103
  • 财政年份:
    1999
  • 资助金额:
    $ 11.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Analysis of Infinite Dimensional Stochastic Models
无限维随机模型的数学分析
  • 批准号:
    09640246
  • 财政年份:
    1997
  • 资助金额:
    $ 11.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Spectral theory of Schrodinger forms and Stochastic analysis for weighted Markov processes
薛定谔形式的谱论和加权马尔可夫过程的随机分析
  • 批准号:
    23K03152
  • 财政年份:
    2023
  • 资助金额:
    $ 11.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stochastic analysis for weighted Markov processes and their applications
加权马尔可夫过程的随机分析及其应用
  • 批准号:
    20K03635
  • 财政年份:
    2020
  • 资助金额:
    $ 11.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spectral properties of symmetric Markov processes and stochastic analysis
对称马尔可夫过程的谱特性和随机分析
  • 批准号:
    18H01121
  • 财政年份:
    2018
  • 资助金额:
    $ 11.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Schr\"odinger forms and stochastic analysis for weighted Markov processes
加权马尔可夫过程的薛定格形式和随机分析
  • 批准号:
    17K05304
  • 财政年份:
    2017
  • 资助金额:
    $ 11.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on Markov processes via stochastic analysis
基于随机分析的马尔可夫过程研究
  • 批准号:
    15H03624
  • 财政年份:
    2015
  • 资助金额:
    $ 11.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Stochastic analysis of Markov processes by Dirichlet forms and its applications
马尔可夫过程的狄利克雷形式随机分析及其应用
  • 批准号:
    26247008
  • 财政年份:
    2014
  • 资助金额:
    $ 11.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Stochastic analysis of jump-type Markov processes and jump-diffusion processes
跳跃型马尔可夫过程和跳跃扩散过程的随机分析
  • 批准号:
    23540172
  • 财政年份:
    2011
  • 资助金额:
    $ 11.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stochastic analysis of Markov processes in terms of Dirichlet forms
用狄利克雷形式对马尔可夫过程进行随机分析
  • 批准号:
    20540130
  • 财政年份:
    2008
  • 资助金额:
    $ 11.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dirichlet Forms and Stochastic Analysis of Symmetric Markov Processes
对称马尔可夫过程的狄利克雷形式和随机分析
  • 批准号:
    18340033
  • 财政年份:
    2006
  • 资助金额:
    $ 11.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Stochastic analysis and stochastic control for symmetric Markov processes
对称马尔可夫过程的随机分析和随机控制
  • 批准号:
    11640142
  • 财政年份:
    1999
  • 资助金额:
    $ 11.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了