Commutative Artinian Algebras

交换阿天尼代数

基本信息

  • 批准号:
    06640077
  • 负责人:
  • 金额:
    $ 1.34万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 1996
  • 项目状态:
    已结题

项目摘要

I.Behevior of General Elements of Complete Intersections of Height 3Our main results are stated as follows :Theorem 1. Let R=k [x, y, z] be the polynomial ring over a field k of characteristic 0. Let I be a complete intersection ideal of R generated by homogeneous elements f_1, f_2, f_3 * R of degrees d_1, d_2, d_3 respectively, where we assume that 2<less than or equal>d_1<less than or equal>d_2<less than or equal>d_3. Then the following conditions are equivalent.(i) mu(I+lR/lR)=3 for any general linear form l * R.(ii) d_3<less than or equal>d_1+d_2-2.Theorem 2. With the same notation and assumption as above we have(i) d_3<less than or equal>d_1+d_2-2<less than or equal>d_3*I : l is generated by 3 elements.(ii) d_3<less than or equal>d_1+d_2-2*I : l is generated by 5 elements.As a consequence we can prove that the Hard Lefschetz theorem holds on the the ring R/I for the cases (i) d_1<less than or equal>3, d_2<less than or equal>3, *d_3, (ii) d_1<less than or equal>4, d_2<less than or … More equal>4, *d_3*4, (iii) d_3<greater than or equal>d_1+d_2-3.II.The behavior of the vibrating string with moving boundariesWe studied the behavior of the vibrating string with moving boundaries in detail. The most general results are the following. We are dealt with the initial-boundary value problem for one-dimensional wave equation with time-periodic boundary conditions and time-peridic boundary functions. This is the mathematical model of the vibrating string with the both ends which describe the Lissajous figures. Every solution is time-quasiperiodic if the rotation number of a composed function defined by the boundary functions and the above time-periods satisfy some Diophantine inequality. From this it follows that for 'almost all' boundary functions the solutions are quasiperiodic. Further the solutions are extended to the space-quasiperiodic functions in the whole R^2-plane which satisfy the wave equation and the singularities of the solutions propagate along the reflected characteristics. From our research it is shown that several fundamental properties from the analytic number theory play an essential role in the behavior of the solutions. Less
I.高度完全交的一般元素的性质3我们的主要结果如下:定理1.设R=k [x,y,z]是特征为0的域k上的多项式环.设I是R中由d_1,d_2,d_3次齐次元素f_1,f_2,f_3 * R生成的完全交理想,其中设<less than or equal>2d_1d_2d_3<less than or equal><less than or equal>.则以下条件是等效的。(i)对于任意一般线性形式l * R,μ(I+lR/lR)=3。(ii)d_3 <less than or equal>d_1+d_2- 2.定理2.利用与上述相同的符号和假设,我们有(i)<less than or equal>d_3d_1 +d_2- 2d_3 <less than or equal>*I:l由3个元素生成。(ii)d_3d_1 <less than or equal>+d_2-2*I:l是由5个元素生成的环,由此我们可以证明:当(i)<less than or equal>d_13,d_23<less than or equal>,d_3 *,(ii)<less than or equal>d_14,d_2&lt;小于或 ...更多信息 equal&gt;4,*d_3*4,(iii)d_3d_1 <greater than or equal>+d_2- 3. II.运动边界弦振动的行为我们详细研究了运动边界弦振动的行为。最一般的结果如下。研究了一类具有时间周期边界条件和时间周期边界函数的一维波动方程的初边值问题。这是描述李萨如图形的两端振动弦的数学模型。如果由边界函数和上述时间周期定义的复合函数的旋转数满足丢番图不等式,则每个解都是时间拟周期解。由此可见,对于“几乎所有”边界函数,解都是拟周期的。进一步将解推广到整个R^2平面上满足波动方程的空间拟周期函数,解的奇性沿着反射特征传播。从我们的研究表明,解析数论的几个基本性质在解的行为中起着至关重要的作用。少

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Yamaguchi: "Periodic motions of vibrating string with a periedically moving boundary" Proceedings of the Confevence on Dynamical Systems and Differential Eguations (Dekker). (発表予定).
M. Yamaguchi:“具有周期性移动边界的振动弦的周期性运动”动力系统和微分方程会议记录(Dekker)(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Yamagucui: "Quasiperiodic motions of vibrating string with periodically moving boundan′es" (発表予定).
M.Yamagucui:“具有周期性移动边界的振动弦的准周期运动”(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
渡辺,純三: "Hankel matrices and Hankel ideals"
Junzo Watanabe:“汉克尔矩阵和汉克尔理想”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Yamaguchi: "Quasiperiodic behavior of vibrating string with the Lissajous houndary Condition" Proceedings of the Confereuce on Functional Analysis and Global Analysis (Springer). (発表予定).
M. Yamaguchi:“具有利萨育边界条件的振动弦的准周期行为”泛函分析和全局分析会议记录(施普林格)(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Yamaguchi: "Quasiperiodic behavior of vibrating string with the Lissajous boundary condition" Proceedings of the International Conference on Functional Analysis and Global Analysis (Dekker). (to appear).
M.Yamaguchi:“具有利萨如边界条件的振动弦的准周期行为”国际泛函分析和全局分析会议记录(Dekker)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAMAGUCHI Masaru其他文献

YAMAGUCHI Masaru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAMAGUCHI Masaru', 18)}}的其他基金

Investigation of mechanizm in orthodontocally root resorption through nothch signalinhg in periodontal ligament cells and Th17cells
牙周膜细胞和Th17细胞中Notch信号传导正畸牙根吸收的机制研究
  • 批准号:
    25463200
  • 财政年份:
    2013
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The examination of the expression of chemokines and RANKL in root resorption during orthodontic tooth movement
正畸牙移动过程中牙根吸收趋化因子及RANKL表达的检测
  • 批准号:
    22592297
  • 财政年份:
    2010
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Almost periodic oscillations of linear and nonlinear hyperbolic equations
线性和非线性双曲方程的几乎周期性振荡
  • 批准号:
    18540220
  • 财政年份:
    2006
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effects of relaxin on collagen metabolism by human periodontal ligament cells
松弛素对人牙周膜细胞胶原代谢的影响
  • 批准号:
    18592252
  • 财政年份:
    2006
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The global behavior of solutions of evolution equations in noncylindrical domain with time-moving boundaries
时动边界非圆柱域演化方程解的全局行为
  • 批准号:
    15540213
  • 财政年份:
    2003
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Interleukin-6 stimulates cathepsin B and L activities of human periodontal ligament cells through the signaling pathways
Interleukin-6通过信号通路刺激人牙周膜细胞的组织蛋白酶B和L活性
  • 批准号:
    14571969
  • 财政年份:
    2002
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the Behavior of Solutions Evolution Equations in Time-Almost Periodic Noncylindrical Domains
时间类周期非圆柱域中解演化方程的行为研究
  • 批准号:
    12640220
  • 财政年份:
    2000
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Behavior of solutions of IBVP witrh periodically moving boundary conditions of evolution equations
具有周期性移动演化方程边界条件的 IBVP 解的行为
  • 批准号:
    09640223
  • 财政年份:
    1997
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and Application of <C_2> -Symmetrically Substituted Pyrrolidine Chiral Auxiliaries
<C_2>-对称取代吡咯烷手性助剂的开发与应用
  • 批准号:
    59470020
  • 财政年份:
    1984
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了