The global behavior of solutions of evolution equations in noncylindrical domain with time-moving boundaries
时动边界非圆柱域演化方程解的全局行为
基本信息
- 批准号:15540213
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1) Let the space dimension be 1 to 5. Consider nonlinear sphere-symmetric autonomous wave equations in ball. We showed that the equations have infinitely many time-periodic solutions. In the proof we used the Diophantine inequalities on the eigenvalues of Laplacian and the periods. To this end we studied in detail numerical properties of the zero points of the Bessel functions, using the asymptotic expansions of the zero points.2) We considered IBVP for linear equations of heavy suspended string. Assume that time-quasiperiodic force works to the string. We assume the general Diophantine conditions on the eigenvalues of the string operator and the quasi perios Then we completely made clear the strunture of almost periodic structure of the solutions of IBVP. To show this statement, we defined well-matched function spaces, solved the eigenfunction problem in these function spaces and constructed the spectral theory.3) We considered BVP for nonlinear sphere-symmetric wave equations in ball with periodically moving boundaries. Then we showed the existence of periodic solutions of the BVP.4) The following theorem on the geodesics on manifolds is proved by M.Tanaka.Theorem : Let M be a real analytic Riemaniann manifold homeomorphic to a 2-sphere. If the Gaussian curvature of M is positive, then the conjugate locus of each point consists of a single point or has at least 4 cusps.
1)设空间维度为1 ~ 5。考虑球中的非线性球对称自主波动方程。我们证明了方程有无穷多个时间周期解。在证明中,我们在拉普拉斯特征值和周期上使用了丢芬图不等式。为此,我们利用贝塞尔函数零点的渐近展开式,详细研究了贝塞尔函数零点的数值性质。2)考虑了重悬杆线性方程组的IBVP问题。假设时间准周期力作用于弦。假设了串算子的特征值和拟周期的一般丢芬图条件,从而完全明确了IBVP解的概周期结构。为了证明这一说法,我们定义了良好匹配的函数空间,解决了这些函数空间中的特征函数问题,并构造了谱理论。3)考虑了具有周期运动边界的球中非线性球对称波动方程的BVP问题。4)证明了流形上测大地上的下列定理:定理:设M是一个实数解析黎曼流形同胚于2球。如果M的高斯曲率为正,则每个点的共轭轨迹由一个点组成或至少有4个顶点。
项目成果
期刊论文数量(48)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Almost periodic oscillations of suspended string under quasiperiodic linearforce
准周期线性力作用下悬弦的近似周期振荡
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:M.Tanaka;M.Yamaguchi;M.Yamaguchi;M.Yamaguchi;M.Yamaguchi
- 通讯作者:M.Yamaguchi
Periodic solutions of nonlinear 3D WE in sphere-symmetric domain with periodically oscillating boundaries
具有周期性振荡边界的球对称域中非线性 3D WE 的周期解
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:M.Tanaka;M.Yamaguchi;M.Yamaguchi;M.Yamaguchi;M.Yamaguchi;M.Yamaguchi;M.Tanaka;M.Yamaguchi;M.Yamaguchi;M.Yamaguchi;M.Yamaguchi;M.Yamaguchi;M.Yamaguchi
- 通讯作者:M.Yamaguchi
Infinitely many periodic solutions of one-dimensional Klein Gordon equations
一维克莱因戈登方程的无穷多个周期解
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:M.Tanaka;M.Yamaguchi;M.Yamaguchi;M.Yamaguchi;M.Yamaguchi;M.Yamaguchi;M.Tanaka;M.Yamaguchi;M.Yamaguchi;M.Yamaguchi;M.Yamaguchi;M.Yamaguchi;M.Yamaguchi;M.Yamaguchi;M.Yamaguchi;M.Yamaguchi
- 通讯作者:M.Yamaguchi
Free and forced vibrations of nonlinear wave equations in ball
- DOI:10.1016/j.jde.2004.04.014
- 发表时间:2004-09
- 期刊:
- 影响因子:2.4
- 作者:M. Yamaguchi
- 通讯作者:M. Yamaguchi
M.Yamaguchi: "String equation and one-dimensional quasiperiodic dynamical systems"京都大学数理解析研究所講究録. (発表予定).
M. Yamaguchi:“弦方程和一维准周期动力系统”京都大学数学科学研究所 Kokyuroku(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAMAGUCHI Masaru其他文献
YAMAGUCHI Masaru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAMAGUCHI Masaru', 18)}}的其他基金
Investigation of mechanizm in orthodontocally root resorption through nothch signalinhg in periodontal ligament cells and Th17cells
牙周膜细胞和Th17细胞中Notch信号传导正畸牙根吸收的机制研究
- 批准号:
25463200 - 财政年份:2013
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The examination of the expression of chemokines and RANKL in root resorption during orthodontic tooth movement
正畸牙移动过程中牙根吸收趋化因子及RANKL表达的检测
- 批准号:
22592297 - 财政年份:2010
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Almost periodic oscillations of linear and nonlinear hyperbolic equations
线性和非线性双曲方程的几乎周期性振荡
- 批准号:
18540220 - 财政年份:2006
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effects of relaxin on collagen metabolism by human periodontal ligament cells
松弛素对人牙周膜细胞胶原代谢的影响
- 批准号:
18592252 - 财政年份:2006
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Interleukin-6 stimulates cathepsin B and L activities of human periodontal ligament cells through the signaling pathways
Interleukin-6通过信号通路刺激人牙周膜细胞的组织蛋白酶B和L活性
- 批准号:
14571969 - 财政年份:2002
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the Behavior of Solutions Evolution Equations in Time-Almost Periodic Noncylindrical Domains
时间类周期非圆柱域中解演化方程的行为研究
- 批准号:
12640220 - 财政年份:2000
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Behavior of solutions of IBVP witrh periodically moving boundary conditions of evolution equations
具有周期性移动演化方程边界条件的 IBVP 解的行为
- 批准号:
09640223 - 财政年份:1997
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Commutative Artinian Algebras
交换阿天尼代数
- 批准号:
06640077 - 财政年份:1994
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and Application of <C_2> -Symmetrically Substituted Pyrrolidine Chiral Auxiliaries
<C_2>-对称取代吡咯烷手性助剂的开发与应用
- 批准号:
59470020 - 财政年份:1984
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)














{{item.name}}会员




