Behavior of solutions of IBVP witrh periodically moving boundary conditions of evolution equations

具有周期性移动演化方程边界条件的 IBVP 解的行为

基本信息

  • 批准号:
    09640223
  • 负责人:
  • 金额:
    $ 1.92万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1999
  • 项目状态:
    已结题

项目摘要

We are concerned with IBVP for one or two dimensional wave equations defined in domains with periodically or quasiperiodically moving boundaries and boundary functions. The purpose of our research is the behavior of solutions of the IBVP, Main results of our research are as follows.1. A simple composed function A defined by two boundary functions plays an essential role in the behavior of the solutions. An important mapping by the reflective characteristics is defined by the composed function. By the reflective characteristics the geometric structure of problem was clarified.2. Consider the case where the above A defines periodic dynamical system (PDS). If the rotation number of the PDS satisfies the Diophantine inequality from number theory, then every solution is quasiperiodic both in space and time. This result is epoch-making in this subject. That is, the problem in this case is almost completely solved. From this result the interesting result by J. Cooper is the exceptional case. … More Also the necessary condition was considered and some results were obtained, by using some results from number theory.3. We found the new interesting domain mapping which tr4nsforms the periodic noncylin-drical domain onto a cylindrical domain. The important fact is that the wave operator is preserved by this mapping, different from other results. By this we can show the existence of periodic solutions of BVP for nonlinear wave equations which seemed difficult to show Also we made clear the behavior of the solutions of IBVP in case of nonhomogeneous wave equations.4. Generally the case where the above A defines quasiperiodic dynamical systems is difficult. To obtain the corresponding results of the periodic case, we defined the new concept the upper (lower) rotation number. Using this, we showed the important Reduction Theorem, and applying this Theorem, we had the results. Different from the PDS, in this case the boundary functions are of the perturbed form. In this sense the results are not global, while the periodic case is of global character.In the membrane oscillation we considered only the case where the boundaries are circles and the solutions should be spherically symmetric. The general case is extremely difficult. Less
本文讨论了一类一维或二维波动方程的IBVP问题,该方程定义在具有周期性或拟周期性运动边界和边界函数的区域上。我们的研究目的是研究IBVP解的行为,主要研究结果如下.由两个边界函数定义的简单复合函数A对解的行为起着至关重要的作用。由反射特性定义的一个重要映射是由组合函数定义的。利用反射特性,明确了问题的几何结构.考虑上述A定义周期动力系统(PDS)的情况。如果PDS的旋转数满足数论中的丢番图不等式,则每个解在空间和时间上都是拟周期的。这一成果在这一学科中具有划时代的意义。也就是说,这种情况下的问题几乎完全解决了。从这个结果中,J.库珀的有趣结果是例外情况。 ...更多信息 利用数论中的一些结果,考虑了其必要条件,得到了一些结果.我们发现了一种新的有趣的区域映射,它将周期性非圆柱形区域变换到圆柱形区域上。重要的事实是,波算子被保存由这个映射,不同于其他结果。由此,我们可以证明非线性波动方程边值问题周期解的存在性,这在以往的研究中是很难证明的.同时,我们也明确了非齐次波动方程边值问题周期解的性质.一般来说,上述A定义准周期动力系统的情况是困难的。为了得到周期情形的相应结果,我们定义了上(下)旋数的新概念。利用这一点,我们证明了重要的归约定理,并应用这一定理,我们得到了结果。与PDS不同的是,在这种情况下,边界函数是摄动形式的。在这种意义下,结果不是整体的,而周期的情况是整体的,在膜振动中,我们只考虑了边界是圆的情况,解应该是球对称的。一般情况下是非常困难的。少

项目成果

期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
J. Itoh & M. Tanaka: "A Sard Theorem for the distance functions"(発表予定).
J. Itoh 和 M. Tanaka:“距离函数的萨德定理”(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M. Tanaka: "A Sard theorem for the distance functions"(with J. Itoh).. (to appear).
M. Tanaka:“距离函数的萨德定理”(与 J. Itoh)..(即将出现)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Akamatsu: "Remarks on ranks of Lie algebras associated with a second order partial differential operator and necessary conditions for hypoellipticity"Proc. School of Sci. Tokai Univ.. Vol.34. 1-12 (1999)
T. Akamatsu:“关于与二阶偏微分算子相关的李代数的秩和亚椭圆性的必要条件的评论”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Tanaka & J.Itoh: "The dimension of a cut locus on a smooth Riemannian manifold" Tohku Math.Journal. (発表予定).
M.Tanaka 和 J.Itoh:“光滑黎曼流形上切割轨迹的维数”Tohku Math.Journal(即将出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Sugita: "Advanced software mechanisms for computer-aided instruction in information literacy"Proceedings of Apec-CIL'97 (with Yoshihieo Adachi, Youzou Miyadera, Kensei Tsuchida and Takeo Yaku). 8-40
K.Sugita:“信息素养计算机辅助教学的高级软件机制”Apec-CIL97 论文集(与 Yoshihieo Adachi、Youzou Miyadera、Kensei Tsuchida 和 Takeo Yaku)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAMAGUCHI Masaru其他文献

YAMAGUCHI Masaru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAMAGUCHI Masaru', 18)}}的其他基金

Investigation of mechanizm in orthodontocally root resorption through nothch signalinhg in periodontal ligament cells and Th17cells
牙周膜细胞和Th17细胞中Notch信号传导正畸牙根吸收的机制研究
  • 批准号:
    25463200
  • 财政年份:
    2013
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The examination of the expression of chemokines and RANKL in root resorption during orthodontic tooth movement
正畸牙移动过程中牙根吸收趋化因子及RANKL表达的检测
  • 批准号:
    22592297
  • 财政年份:
    2010
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Almost periodic oscillations of linear and nonlinear hyperbolic equations
线性和非线性双曲方程的几乎周期性振荡
  • 批准号:
    18540220
  • 财政年份:
    2006
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effects of relaxin on collagen metabolism by human periodontal ligament cells
松弛素对人牙周膜细胞胶原代谢的影响
  • 批准号:
    18592252
  • 财政年份:
    2006
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The global behavior of solutions of evolution equations in noncylindrical domain with time-moving boundaries
时动边界非圆柱域演化方程解的全局行为
  • 批准号:
    15540213
  • 财政年份:
    2003
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Interleukin-6 stimulates cathepsin B and L activities of human periodontal ligament cells through the signaling pathways
Interleukin-6通过信号通路刺激人牙周膜细胞的组织蛋白酶B和L活性
  • 批准号:
    14571969
  • 财政年份:
    2002
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the Behavior of Solutions Evolution Equations in Time-Almost Periodic Noncylindrical Domains
时间类周期非圆柱域中解演化方程的行为研究
  • 批准号:
    12640220
  • 财政年份:
    2000
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Commutative Artinian Algebras
交换阿天尼代数
  • 批准号:
    06640077
  • 财政年份:
    1994
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and Application of <C_2> -Symmetrically Substituted Pyrrolidine Chiral Auxiliaries
<C_2>-对称取代吡咯烷手性助剂的开发与应用
  • 批准号:
    59470020
  • 财政年份:
    1984
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

High Order Wave Equation Algorithms for the Frequency Domain
频域高阶波动方程算法
  • 批准号:
    2345225
  • 财政年份:
    2023
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Standard Grant
High Order Wave Equation Algorithms for the Frequency Domain
频域高阶波动方程算法
  • 批准号:
    2208164
  • 财政年份:
    2022
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Standard Grant
A study on a space-time boundary element method for the wave equation
波动方程时空边界元法研究
  • 批准号:
    20K11849
  • 财政年份:
    2020
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Derivation of the Kinetic Wave Equation
运动波方程的推导
  • 批准号:
    1800840
  • 财政年份:
    2018
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Continuing Grant
Inverse Problems for the Wave Equation
波动方程的反问题
  • 批准号:
    1615616
  • 财政年份:
    2016
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Standard Grant
The analysis of effects by derivative loss in the fundamental solution of the high-dimensional wave equation on nonlinear problems
高维波动方程基本解对非线性问题导数损失的影响分析
  • 批准号:
    15K04964
  • 财政年份:
    2015
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Diffusion phenomenon and Wave phenomenon of solutions to the damped wave equation
阻尼波动方程解的扩散现象和波动现象
  • 批准号:
    25400184
  • 财政年份:
    2013
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical Study of Elastic Wave Equation
弹性波方程的数值研究
  • 批准号:
    431035-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.92万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: The Wave Equation on Black Hole Backgrounds
职业:黑洞背景上的波动方程
  • 批准号:
    1054289
  • 财政年份:
    2011
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Continuing Grant
A study of a high accurate numerical method for the inverse problem in the wave equation
波动方程反问题的高精度数值方法研究
  • 批准号:
    23540152
  • 财政年份:
    2011
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了