Research on the Behavior of Solutions Evolution Equations in Time-Almost Periodic Noncylindrical Domains

时间类周期非圆柱域中解演化方程的行为研究

基本信息

  • 批准号:
    12640220
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2002
  • 项目状态:
    已结题

项目摘要

In this project we dealt with linear and nonlinear wave equations in noncylindrical domain periodic or quasiperiodic in time. We studied the qualitative behavior of solutions of the initial boundary value problems (IBVP) and the boundary value problems (BVP). Our results are as follows.(1) We considered BVP for 1-D nonlinear wave equations in time-periodic noncylindrical domains. If the nonlinear forcing term, the boundary functions and the boundary data are periodic in time with same period, BVP have time-periodic solutions. This problem had been regarded as one of the difficult problems.(2) We considered IBVP for 1-D linear wave equations in time-quasiperiodic noncylindrical domains. The nonhomogeneous terms of the equations and the boundary data are also time quasiperiodic. As we showed in the previous Research Project, the solutions are generally almost periodic in time, hence bounded in time. We studied this phenomena more deeply, and found that there exist solutions which are the … More superpositions of time-unbounded waves.(3) We considered IBVP for 3-D radially symmetric linear wave equations in time-quasiperiodic noncylindrical domains whose space-domains are surrounded by two balls. We showed that the solutions are generally almost periodic in time.(4) We considered BVP for 3-D radially symmetric nonlinear wave equations in time-periodic noncylindrical domains whose space-domains are balls. Under the similar assumptions to those of (1) BVP have time-periodic solutions. The results seem to be interesting.In order to solve the problems, we developed some useful method. This method consists of a transformation of BVP for wave equations to some functional equations and domain transformations that transform the noncylindrical domains to cylindrical domains. The former was established by M. Yamaguchi and the latter by M. Yamaguchi and H. Yoshida. This method is based on the Reduction Theorems by M. Herman and J. Yoccoz in periodic case and by M. Yamaguchi in quasiperiodic case. Less
本项目研究了非圆柱区域上的线性和非线性波动方程,时间上为周期或拟周期。研究了初边值问题和边值问题解的定性性质。我们的结果如下。(1)研究了时间周期非圆柱区域上一维非线性波动方程的边值问题。如果非线性强迫项、边界函数和边界数据都是周期的,且周期相同,则边值问题存在时间周期解。这一问题一直被视为难题之一。(2)考虑了时间拟周期非圆柱区域上一维线性波动方程的IBVP。方程的非齐次项和边界数据也是时间拟周期的。正如我们在上一个研究项目中所展示的,解通常在时间上是几乎周期的,因此在时间上是有界的。我们更深入地研究了这一现象,发现存在解决方案, ...更多信息 时间无界波的叠加。(3)本文研究了三维径向对称线性波动方程在时间拟周期非圆柱区域上的IBVP问题,其中空间区域被两个球包围。我们证明了这些解在时间上一般是概周期的。(4)研究了三维径向对称非线性波动方程在时间周期非圆柱区域上的边值问题。在与(1)类似的假设下,边值问题存在时间周期解。为了解决这些问题,我们提出了一些有用的方法。该方法包括将波动方程的边值问题转化为函数方程和将非圆柱形区域转化为圆柱形区域的区域变换。前者是由M. Yamaguchi和M. Yamaguchi和H.吉田这种方法是以M.赫尔曼和J.Yoccoz在周期情况下和M. Yamaguchi在准周期情况下。少

项目成果

期刊论文数量(41)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Matsuyama: "L^2-behavior of solutions to the linear heat and wave equations in exterior domains (with R.Ikehata)"Scientiae Mathematicae Japonicae. 55. 33-42 (2002)
T.Matsuyama:“外部域中线性热波方程解的 L^2 行为(与 R.Ikehata 合作)”Scientiae Mathematicae Japonicae。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M. Tanaka: "Characterization of a differentiable points of the distance function to the cut locus"J. Math. Soc. Japan. Vol.55, No.1. 231-241 (2003)
M. Tanaka:“到切割轨迹的距离函数的可微分点的表征”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Tanaka: "Characterization of a differentiable point of the distance function to the cut locus"J. Math. Soc. Japan. Vol.55 No.1. 231-241 (2003)
M.Tanaka:“到切割轨迹的距离函数的可微点的表征”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Yamaguchi: "Nonhomogeneous wave equations in a domain with periodically oscillating boundaries"Proceedings of the 4-th Workshop on Differential Equations. 210-212 (1999)
M.Yamaguchi:“具有周期性振荡边界的域中的非齐次波动方程”第四届微分方程研讨会论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Yamaguchi: "Periodic solutions of nonlinear equations of string with periodically Ocillating boundaries"Funkcialaj Ekvacioj. 45. 397-416 (2002)
M.Yamaguchi:“具有周期性振荡边界的弦非线性方程的周期解”Funkcialaj Ekvacioj。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAMAGUCHI Masaru其他文献

YAMAGUCHI Masaru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAMAGUCHI Masaru', 18)}}的其他基金

Investigation of mechanizm in orthodontocally root resorption through nothch signalinhg in periodontal ligament cells and Th17cells
牙周膜细胞和Th17细胞中Notch信号传导正畸牙根吸收的机制研究
  • 批准号:
    25463200
  • 财政年份:
    2013
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The examination of the expression of chemokines and RANKL in root resorption during orthodontic tooth movement
正畸牙移动过程中牙根吸收趋化因子及RANKL表达的检测
  • 批准号:
    22592297
  • 财政年份:
    2010
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Almost periodic oscillations of linear and nonlinear hyperbolic equations
线性和非线性双曲方程的几乎周期性振荡
  • 批准号:
    18540220
  • 财政年份:
    2006
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effects of relaxin on collagen metabolism by human periodontal ligament cells
松弛素对人牙周膜细胞胶原代谢的影响
  • 批准号:
    18592252
  • 财政年份:
    2006
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The global behavior of solutions of evolution equations in noncylindrical domain with time-moving boundaries
时动边界非圆柱域演化方程解的全局行为
  • 批准号:
    15540213
  • 财政年份:
    2003
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Interleukin-6 stimulates cathepsin B and L activities of human periodontal ligament cells through the signaling pathways
Interleukin-6通过信号通路刺激人牙周膜细胞的组织蛋白酶B和L活性
  • 批准号:
    14571969
  • 财政年份:
    2002
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Behavior of solutions of IBVP witrh periodically moving boundary conditions of evolution equations
具有周期性移动演化方程边界条件的 IBVP 解的行为
  • 批准号:
    09640223
  • 财政年份:
    1997
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Commutative Artinian Algebras
交换阿天尼代数
  • 批准号:
    06640077
  • 财政年份:
    1994
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and Application of <C_2> -Symmetrically Substituted Pyrrolidine Chiral Auxiliaries
<C_2>-对称取代吡咯烷手性助剂的开发与应用
  • 批准号:
    59470020
  • 财政年份:
    1984
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

Localized And Homoclinic Solutions of a Nonlinear Wave Equation in Two-Dimensional Space
二维空间中非线性波动方程的定域同宿解
  • 批准号:
    13640395
  • 财政年份:
    2001
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear Wave Equation Asymptotics and Functions of Bounded Higher Variation
非线性波动方程渐近和有界高变分函数
  • 批准号:
    9970273
  • 财政年份:
    1999
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
An Existence Question For a Nonlinear Wave Equation and a Control Problem For a Hyperbolic System
非线性波动方程的存在性问题和双曲系统的控制问题
  • 批准号:
    7407500
  • 财政年份:
    1974
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
AN EXISTENCE QUESTION FOR A NONLINEAR WAVE EQUATION AND A CONTROL PROBLEM FOR A HYPERBOLIC SYSTEM
非线性波动方程的存在性问题和双曲线系统的控制问题
  • 批准号:
    7462860
  • 财政年份:
    1974
  • 资助金额:
    $ 2.3万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了