非線形偏微分方程式の解の精度保証付き数値計算法に関する研究

非线性偏微分方程解精度保证的数值计算方法研究

基本信息

  • 批准号:
    06740167
  • 负责人:
  • 金额:
    $ 0.58万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 无数据
  • 项目状态:
    已结题

项目摘要

本年度の研究により,過去得られた楕円型方程式に関する結果を,より実用度の高いものに改良・拡張した.具体的には以下の項目の研究を行った.1.与えられた非線形偏微分方程式を,超関数理論に基づく弱形式に変形する.更にNewton-Likeな手法を用い,適当なHilbert空間上の不動点問題に同値変形を行う.この際,より効率よい定式化を提案した.2.検証結果の反復の過程で不動点定理の条件が満たされ,解の存在が計算機内で保証されるアルゴリズムを導く.計算機内では,有限要素法をもとに区間演算の性質に留意しながら近似解の決定,検証を行う反復解の計算,および射影によって生じる誤差評価を行った.3.また,検証プログラムの高速化と効率化の検討,およびその実用性の評価を行なった.具体的には,設備備品として購入したパーソナルコンピュータを用い,内積およびノルムの評価を数式処理システムで行い,結果を汎用性のある組み込み関数として作成した.4.丸め誤差を考慮した数値計算への適用として,精度保証付きライブラリによる解の精度保証を微分不能項を含む非線形MHD方程式に適用し,解の存在検証に成功した.今後の研究としては,これまでに得られた非線形楕円型方程式の解の精度保証計算を,Navier-Stokes方程式の定常解の精度保証に適用することを行う予定であり,既に線形化版であるStokes方程式の有限要素解に対するa priori/aposterioriな誤差評価の定式化に関する考察に着手している.
This year's research, the past has been related to the results of the model equation, the implementation of high efficiency and improvement. 1. Non-linear partial differential equations, ultra-correlation theory, weak form. In addition, Newton-Like method is used to solve fixed point problems in Hilbert space. 2. The condition of the fixed point theorem in the iterative process of verifying the result is established, and the existence of the solution is guaranteed in the computer. In the computer, the finite element method is used to determine the approximate solution, to verify the iterative solution calculation, to generate the error evaluation, and to verify the speed-up of the algorithm. For the specific purpose, equipment spare parts are purchased, and the inner product is used for the evaluation of the numerical formula. The result is universal. The calculation of the numerical value is applicable. The accuracy of the solution is guaranteed. The differential term is not applicable to the nonlinear MHD equation. The existence of the solution was verified successfully. In the future, we will study the accuracy assurance calculation of the solution of nonlinear equations, the accuracy assurance application of the steady solution of Navier-Stokes equations, and the investigation of the linear version of Stokes equations with finite element solutions to a priori/aposteriori error evaluation.

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mitsuhiro T.Nakao: "On computational proofs of the existence of solutions to nonlinear parabolic problems" Journal of Computational and Applied Mathematics. 50. 401-410 (1994)
Mitsuhiro T.Nakao:“关于非线性抛物线问题解存在性的计算证明”计算与应用数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

渡部 善隆其他文献

Kolmogorov問題の精度保証付き数値計算に対するいくつかの考察
保证柯尔莫哥洛夫问题精度的数值计算的一些注意事项
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    平尾 将剛;奥田 隆幸;澤 正憲;渡部 善隆
  • 通讯作者:
    渡部 善隆
重調和方程式の近似解に対する構成的誤差評価
双调和方程近似解的建设性误差评估
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    渡部 善隆;木下 武彦;中尾 充宏
  • 通讯作者:
    中尾 充宏
Rigorous numerics of finite-time singularity for ODEs
ODE 有限时间奇点的严格数值
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    渡部 善隆;木下 武彦;中尾 充宏;Kaname Matsue
  • 通讯作者:
    Kaname Matsue
Orr-Sommerfeld方程式の臨界Reynolds数に対する精度保証付き数値計算(上
奥尔-索末菲方程临界雷诺数的保证精度的数值计算(上部分)
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kimihiko Motegi;Masakazu Teragaito;Nakahiro Yoshida;渡部 善隆
  • 通讯作者:
    渡部 善隆
精度保証付き数値計算による楕円型作用素の逆作用素ノルム評価
使用数值计算对椭圆算子进行逆算子范数评估并保证精度
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shoichi Fujimori;Wayne Rossman;Masaaki Umehara;Kotaro Yamada; Seong-Deog Yang;Sumio Yamada;渡部 善隆
  • 通讯作者:
    渡部 善隆

渡部 善隆的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('渡部 善隆', 18)}}的其他基金

精度保証付き数値計算の前進---有限と無限をつなぐもの---
保证精度的数值计算进展---连接有限与无限---
  • 批准号:
    23K20812
  • 财政年份:
    2024
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
計算機援用「超」ホモトピー法---精度保証付き数値計算の新次元---
计算机辅助“超”同伦法——精度保证的数值计算新维度——
  • 批准号:
    24H00694
  • 财政年份:
    2024
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
精度保証付き数値計算の前進---有限と無限をつなぐもの---
保证精度的数值计算进展---连接有限与无限---
  • 批准号:
    21H01000
  • 财政年份:
    2021
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
流体力学的非線形安定性問題に対する計算機援用証明
流体动力学非线性稳定性问题的计算机辅助证明
  • 批准号:
    15740067
  • 财政年份:
    2003
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
精度保証付き多次元逆スペクトル解析
多维逆谱分析,保证精度
  • 批准号:
    13740072
  • 财政年份:
    2001
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Navier-Stokes方程式の精度保証付き数値計算に関する研究
保精度纳维-斯托克斯方程数值计算研究
  • 批准号:
    11740070
  • 财政年份:
    1999
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

精度保証付き数値計算の前進---有限と無限をつなぐもの---
保证精度的数值计算进展---连接有限与无限---
  • 批准号:
    23K20812
  • 财政年份:
    2024
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
固有値に関するアダマール変分の精度保証付き数値計算とスペクトル幾何学への応用
保证精度的哈达玛变分关于特征值的数值计算及其在谱几何中的应用
  • 批准号:
    24KJ1170
  • 财政年份:
    2024
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
補間誤差解析を超えて切り拓く有限要素法と精度保証付き数値計算の新たなる地平
有限元方法和数值计算的新视野,保证精度超越插值误差分析
  • 批准号:
    24K00538
  • 财政年份:
    2024
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
計算機援用「超」ホモトピー法---精度保証付き数値計算の新次元---
计算机辅助“超”同伦法——精度保证的数值计算新维度——
  • 批准号:
    24H00694
  • 财政年份:
    2024
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
不連続拡散係数を持つ反応拡散モデルに対する精度保証付き数値計算法
具有不连续扩散系数的反应扩散模型的精度保证数值计算方法
  • 批准号:
    23K13020
  • 财政年份:
    2023
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
精度保証付き数値計算の前進---有限と無限をつなぐもの---
保证精度的数值计算进展---连接有限与无限---
  • 批准号:
    21H01000
  • 财政年份:
    2021
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
非整数階微分方程式系の解に対する精度保証付き数値計算法の研究
非整数阶微分方程组解精度保证的数值计算方法研究
  • 批准号:
    21K03363
  • 财政年份:
    2021
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
新たな段階に入った有限要素法基盤の精度保証付き数値計算の進展
有限元法精度保证数值计算进展进入新阶段
  • 批准号:
    20H01820
  • 财政年份:
    2020
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
疎行列を係数とする線形方程式の反復解法と精度保証付き数値計算法の融合
以稀疏矩阵为系数的线性方程迭代求解与精度保证的数值计算方法相结合
  • 批准号:
    20H04195
  • 财政年份:
    2020
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
偏微分方程式と有限要素近似に関する精度保証付き数値計算法の発展とその自動化の研究
偏微分方程和有限元近似精度保证的数值计算方法开发及自动化研究
  • 批准号:
    20K03752
  • 财政年份:
    2020
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了