STUDY ON INFINITE TRANSFORMATION GROUPS ON MANIFOLDS

流形上无限变换群的研究

基本信息

  • 批准号:
    07454013
  • 负责人:
  • 金额:
    $ 3.52万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 1996
  • 项目状态:
    已结题

项目摘要

1. We studied the condition for a group to be finitcly gencrated and finitely presented. We gave a proof for the case where the group acts on a simply connceted space such that the quotient space is a finite simplex and the isotropy groups are finitely gencrated and finitely presented. We also gathered a lot of knowledge on the finitely generated and finitely prescnted groups.2. The study of the classifying space for the group of diffeomorphisms extends to the study of the classifying spaces for the groups of homeomorphisms of the limit sets or the end sets. We obtained several results on the topology of them. In particular, we showed that the classifying space of the group of homeomorphisms of the Menger compact space is acyclic. We presented this result in Japan and on abroad in 1995.3. We studied discrete subgroups of Lie groups. We looked at the limit set for conformal transformation groups. We constructed several examples of discrete conformal transformation groups. It will be interesting to investigate the relationship with the number theory.4. We analyzed the measure preserving transformations from the dynamical system viewpoint. We studied the Calabi invariant and the differentiability of the dynamical system. In 1996, we found a relationship between the Calabi invariant of the group of arca preserving diffeomorphisms of the disk and the Euler class of the group of diffeomorphisms of the cirele. This should be important in the future investigation. We constructed interesting examples of mcasure prescrving transformations. We continuc to analyze them.5. We asked prof. Hacfliger of the University of Geneva to review our investigation. We got a high mark on our investigation and tion as well as valuable suggestions.
1.我们研究了群有限生成和有限呈现的条件。我们给出了群作用于简单关联空间的情况的证明,使得商空间是有限单纯形,并且各向同性群是有限生成和有限呈现的。我们还收集了大量关于有限生成群和有限呈现群的知识。2.微分同胚群的分类空间的研究延伸到极限集或端集的同胚群的分类空间的研究。我们获得了关于它们的拓扑的一些结果。特别是,我们证明了门格尔紧空间同胚群的分类空间是非循环的。我们于1995.3在日本和国外介绍了这一结果。我们研究了李群的离散子群。我们研究了共形变换群的极限设置。我们构造了几个离散保角变换群的例子。研究它与数论的关系将会很有趣。4.我们从动力系统的角度分析了测度保持变换。我们研究了动力系统的卡拉比不变量和可微性。 1996年,我们发现了圆盘微分同胚群的卡拉比不变量和圆盘微分同胚群的欧拉类之间的关系。这在以后的调查中应该很重要。我们构建了 mcasure 保护转换的有趣示例。我们继续分析它们。5.我们问教授。日内瓦大学的 Hacfliger 审查了我们的调查。我们的调查和分析得到了高度评​​价,并提出了宝贵的建议。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
TSUBOI,Takashi: "Homological and dynamical study on certain groups of Lipschitz homcomorphisms of the circle" Journal of Mathematical Society of Japan. 47. 1-30 (1995)
TSUBOI,Takashi:“圆的某些Lipschitz同态群的同态和动力学研究”日本数学会杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
TSUBOI,Takashi: "Homological and dynamical study on certain groups of Lipschitz homeomorphisms of the circle." Journal of Mathematical Society of Japan. vol.47. 1-30 (1995)
TSUBOI,Takashi:“圆的某些利普希茨同胚群的同态和动力学研究。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
SERGIESCU,Vlad and TSUBOI,Takashi: "Acyclicity of the groups of homeomorphisms of the Menger compact spaces." American Journal of Mathematics. (to appcar).
SERGIESCU,Vlad 和 TSUBOI,Takashi:“门格尔紧空间同胚群的无环性。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.SAITO: "Local constant of Indicl" Comment,Math Helve fict. 70. 507-515 (1995)
T.SAITO:“Indicl 的局部常数”评论,Math Helve 小说。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TSUBOI Takashi其他文献

TSUBOI Takashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TSUBOI Takashi', 18)}}的其他基金

Regulation of incretin secretion by microbiota metabolites
微生物代谢物调节肠促胰素分泌
  • 批准号:
    20H04121
  • 财政年份:
    2020
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Molecular mechanisms of gastrointestinal hormone secretion by intestinal bacterial metabolites
肠道细菌代谢产物分泌胃肠激素的分子机制
  • 批准号:
    17K08529
  • 财政年份:
    2017
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of ghrelin secretion from endocrine cells
内分泌细胞分泌生长素释放肽的分子机制
  • 批准号:
    26460289
  • 财政年份:
    2014
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechanisms of gliotransmitter release from astrocytes by imaging analysis
通过成像分析星形胶质细胞释放胶质递质的机制
  • 批准号:
    24790207
  • 财政年份:
    2012
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Actions of infinite simple groups
无限简单群的行动
  • 批准号:
    24654011
  • 财政年份:
    2012
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Study on the molecular mechanism of hormone secretion
激素分泌的分子机制研究
  • 批准号:
    21790197
  • 财政年份:
    2009
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Geometric study on infinite simple groups
无限简单群的几何研究
  • 批准号:
    21654009
  • 财政年份:
    2009
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Groups of diffeomorphisms of manifolds
流形微分同胚群
  • 批准号:
    20244003
  • 财政年份:
    2008
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Molecular mechanisms of hormone release revealed by live cell imaging analysis
活细胞成像分析揭示激素释放的分子机制
  • 批准号:
    18689008
  • 财政年份:
    2006
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Various aspects of infinite groups of transformations acting on manifolds
作用于流形上的无限变换群的各个方面
  • 批准号:
    16204004
  • 财政年份:
    2004
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)

相似海外基金

Smooth 4-manifolds, hyperbolic 3-manifolds and diffeomorphism groups
光滑 4 流形、双曲 3 流形和微分同胚群
  • 批准号:
    2304841
  • 财政年份:
    2023
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Continuing Grant
CAREER: Mapping class groups, diffeomorphism groups, and moduli spaces
职业:映射类群、微分同胚群和模空间
  • 批准号:
    2236705
  • 财政年份:
    2023
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Continuing Grant
CAREER: New Directions in Foliation Theory and Diffeomorphism Groups
职业:叶状理论和微分同胚群的新方向
  • 批准号:
    2239106
  • 财政年份:
    2023
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Continuing Grant
Homotopy Theory of Foliations and Diffeomorphism Groups
叶状结构和微分同胚群的同伦理论
  • 批准号:
    2113828
  • 财政年份:
    2021
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Standard Grant
Index theorem relevant to the invariants of diffeomorphism groups
与微分同胚群不变量相关的指数定理
  • 批准号:
    20K03580
  • 财政年份:
    2020
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of new turbulence analysis method by using diffeomorphism groups of Riemannian geometry
利用黎曼几何微分同胚群创建新的湍流分析方法
  • 批准号:
    18KK0379
  • 财政年份:
    2019
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Geometry of diffeomorphism groups and Hamiltonian systems
微分同胚群和哈密顿系统的几何
  • 批准号:
    RGPIN-2014-05036
  • 财政年份:
    2018
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Discovery Grants Program - Individual
Homotopy Theory of Foliations and Diffeomorphism Groups
叶状结构和微分同胚群的同伦理论
  • 批准号:
    1810644
  • 财政年份:
    2018
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Standard Grant
The index theorem involved with foliation and diffeomorphism groups
涉及叶状群和微分同胚群的指数定理
  • 批准号:
    17K05247
  • 财政年份:
    2017
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry of diffeomorphism groups and Hamiltonian systems
微分同胚群和哈密顿系统的几何
  • 批准号:
    RGPIN-2014-05036
  • 财政年份:
    2017
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了