Visualization of the Phase Decomposition Process Based on the Non-liner Diffusion Equation.

基于非线性扩散方程的相分解过程的可视化。

基本信息

  • 批准号:
    07555477
  • 负责人:
  • 金额:
    $ 0.77万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 1996
  • 项目状态:
    已结题

项目摘要

A numerical analysis of the diffusion controlled phase transformation based on the non-liner diffusion equation is one of the main subjects in the field of the computer materials science. In the present study, we propose a new analyzing method of the nonlinear diffusion equation ("discrete type diffusion equation"), where the composition dependencies of atomic interaction energy, elasticity and mobility of atoms are taken into account so as to be able to calculate the phase decomposition in the real alloy system. Furthermore, the information of the solute atom occupation probability in atom site is also included in the proposed calculation theory. The proposed new method has a capability of predicting not only the phase decomposition in the disordered phases but also the other phase transformations such as the stress-induced precipitates coarsening, order/disorder phase transitions, phase decompositions in ordering alloys, the formation process of tweed structures, and so on. The purpo … More se of the present work is to reveal the nature of the phase transformation by visualizing the phase decomposition process. The detail behavior in diffusion controlled phase decomposition is calculated on the basis of the "discrete type non-linear diffusion equation". The results obtained are as follows.The two dimensional computer simulations were performed for the phase decomposition in the Fe-Mo, Fe-Cr, Al-Zn, and Cu-Co binary alloy systems on the basis of the new method. The thermodynamic data of phase diagram for these alloy systems was used in the present simulation. The microstructures theoretically calculated were well coincident with experimental facts of these alloy systems. Particularly, the typical features in the strain-induced microstructure changes were successfully calculated. Furthermore, we prepared the "Introduction Video" for the phase transformation by visualizing the calculated results based on the computer simulations. The detail behavior of the phase decompositions was presented by using the VTR,and this result will be very useful for the education in the field of materials science and engineering. Less
基于非线性扩散方程的扩散控制相变的数值分析是计算机材料科学领域的主要研究课题之一。在本研究中,我们提出了一种新的非线性扩散方程(“离散型扩散方程”)的分析方法,其中考虑了原子相互作用能、原子弹性和原子迁移率的成分依赖性,从而能够计算实际合金系统中的相分解。此外,该计算理论还考虑了溶质原子在原子位上的占据几率信息。该方法不仅能预测无序相中的相分解,而且还能预测应力诱导的析出相粗化、有序/无序相变、有序合金中的相分解、花纹组织的形成过程等其他相变。The Purpo…目前的工作更多的是通过可视化相分解过程来揭示相变的本质。在“离散型非线性扩散方程”的基础上,计算了扩散控制相分解的细节行为。在此基础上,对Fe-Mo、Fe-Cr、Al-Zn、Cu-Co四种二元合金体系的相分解过程进行了二维计算机模拟。模拟中使用的是这些合金体系的相图热力学数据。理论计算的显微组织与这些合金系的实验结果吻合较好。特别是,成功地计算了应变诱发组织变化的典型特征。此外,我们还通过计算机模拟将计算结果可视化,为相变制作了“简介视频”。利用录像机给出了相分解的详细行为,这一结果将对材料科学和工程领域的教育有很大的帮助。较少

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Koyama,T.Miyazaki and A.M.Mebed: "Computer Silnulations of Phase Decomposition in Real Alloy Systems based on the Modified Khachaturyan's Diffusion Equation." Metal. Mater. Trans. A.26. 2617-2623 (1995)
T.Koyama、T.Miyazaki 和 A.M.Mebed:“基于修正哈恰图良扩散方程的实际合金系统相分解的计算机模拟。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Moriya: "Mossbauer Study on the Phase Separation of Fe-Co-Si Alloys" Mater. Trans. JIM. 37. 965-969 (1996)
T.Moriya:“Fe-Co-Si 合金相分离的穆斯堡尔研究”材料。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Moriya: ""Mossbauer Study on the Phase Separation of Fe-Co-Si Alloys"" Mater.Trans.JIM. Vol.37. 965-969 (1996)
T.Moriya:“Fe-Co-Si 合金相分离的穆斯堡尔研究”Mater.Trans.JIM。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Miyazaki: ""Computer Simulations of Phase Decomposition in Real Alloy Systems Based on a Discrete Type Diffusion Equation"" Math.of Microst.Evolution (Proc.of the Inter.Symp.on Math.of Therm.Driven Microst.Evolution [The TMS Fall Meeting '95]). 111-124
T.Miyazaki:“基于离散型扩散方程的真实合金系统相分解的计算机模拟”Math.of Microst.Evolution(Proc.of the Inter.Symp.on Math.of Therm.Driven Microst.Evolution [
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takao Kozakai and Toru Miyazaki: "Experimental and theoretical phase diagrams of the Fe-rich Fe-Si-Ge ordering system." J. Materials Science,. 30. 5056-5064 (1995)
Takao Kozakai 和 Toru Miyazaki:“富铁 Fe-Si-Ge 有序体系的实验和理论相图。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIYAZAKI Toru其他文献

MIYAZAKI Toru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MIYAZAKI Toru', 18)}}的其他基金

Analysis of entire roles for AIM in atherosclerogenesis
AIM 在动脉粥样硬化形成中的全部作用分析
  • 批准号:
    19390094
  • 财政年份:
    2007
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of the new method to investigate the phase transformations based on the computational scientific approachs.
开发基于计算科学方法研究相变的新方法。
  • 批准号:
    09242105
  • 财政年份:
    1997
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Development of the bifurcation theory for the microstructure changes and an application to the superalloys
微观结构变化分叉理论的发展及其在高温合金中的应用
  • 批准号:
    09450235
  • 财政年份:
    1997
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Application of the Bifurcation Theory to the Stability of Microstructure and the Improvement of the Superalloys.
分岔理论在微观组织稳定性及高温合金改进中的应用。
  • 批准号:
    07455280
  • 财政年份:
    1995
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The application of the bifurcation theory to the microstructure changes and its stability.
分岔理论在微观结构变化及其稳定性中的应用。
  • 批准号:
    04452270
  • 财政年份:
    1992
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
The application of the bifurcation theory to the microstructure change and its stability.
分岔理论在微观结构变化及其稳定性中的应用
  • 批准号:
    02452245
  • 财政年份:
    1990
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
Shape Bifurcation Theory on the Stability of Microstructure and its Applications
微观结构稳定性的形状分岔理论及其应用
  • 批准号:
    62460194
  • 财政年份:
    1987
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

On some nonlinear reaction diffusion equation arising in population genetics
群体遗传学中一些非线性反应扩散方程的探讨
  • 批准号:
    22K03369
  • 财政年份:
    2022
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of propagation phenomena and singularity of the logarithmic diffusion equation
对数扩散方程的传播现象和奇异性分析
  • 批准号:
    20K03708
  • 财政年份:
    2020
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Convergence of the Space-time Hybridizable Discontinuous Galerkin Method for the Advection-Diffusion Equation
平流扩散方程时空杂化间断伽辽金法的收敛性
  • 批准号:
    515129-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Study of traveling wave and interfacial dynamics in nonlinear diffusion equation
非线性扩散方程中的行波和界面动力学研究
  • 批准号:
    16K05245
  • 财政年份:
    2016
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The dynamics of a system of a single reaction-diffusion equation coupled with an ordinary differential equation
单反应扩散方程与常微分方程耦合的系统动力学
  • 批准号:
    26400156
  • 财政年份:
    2014
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Blow-up problem for a nonlinear diffusion equation and its diffusion coefficient
非线性扩散方程及其扩散系数的爆炸问题
  • 批准号:
    24840027
  • 财政年份:
    2012
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Analyses on layers arising in spatially inhomogeneous reaction diffusion equation
空间非均匀反应扩散方程层层分析
  • 批准号:
    24540207
  • 财政年份:
    2012
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the blowup solution and time global solution for the nonlinear drift-diffusion equation system
非线性漂移扩散方程组的爆炸解和时间全局解研究
  • 批准号:
    24540201
  • 财政年份:
    2012
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Large-time behavior of solutions to the drift-diffusion equation
漂移扩散方程解的大时间行为
  • 批准号:
    23740117
  • 财政年份:
    2011
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study on the global structure of the stationary solutions of Reaction diffusion equation and its limiting system
反应扩散方程平稳解的全局结构及其极限系统研究
  • 批准号:
    20540122
  • 财政年份:
    2008
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了