Topological Phases in Nonlinear Oscillatory Systems

非线性振荡系统中的拓扑相

基本信息

项目摘要

Topology refers to a property of matter that is much desired as a guiding principle to realize robust systems, insensitive to continuous deformations and various sources of noise. A standard example is the quantized Hall conductance discussed in condensed matter physics. Topological phases have been analyzed both in quantum and classical systems, but less in the context of biological applications, although the robustness of biological systems to the inherent stochastic fluctuations is not fully understood. We want to explore whether topological protection mechanisms play also some role in biological systems. We consider three nonlinear systems which can perform autonomous oscillations: (i) a unit composed of a feed-forward and a feed-back loop that amounts to a standard motif in genetic and neural networks; (ii) a unit with hierarchical heteroclinic dynamics, suited to describe transient processes in particular in the brain; and (iii) a modified repressilator, designed to model transient cell dynamics. When dynamical units, belonging to one of these types, are coupled on spatial grids, we choose different couplings, which promise the observation of topological phases. We analyze the expected edge modes, characterize them by topological invariants, and pursue the dependence of topological synchronization as a function of the system parameters, the implemented chirality, the nonlinear interaction strength, and the Hermitian or non-Hermitian properties of the involved effective Hamiltonians. In the context of biological networks, stable clocks, stable biomass transport and stable transition paths in heteroclinic networks will be desirable features when their stability is based on the very efficient topological protection against the various sources of noise.
拓扑是指物质的一种性质,它是实现鲁棒系统的指导原则,对连续变形和各种噪声源不敏感。一个标准的例子是在凝聚态物理学中讨论的量子化霍尔电导。拓扑相位已经在量子和经典系统中进行了分析,但在生物应用的背景下较少,尽管生物系统对固有随机波动的鲁棒性尚未完全理解。我们想探讨拓扑保护机制是否也在生物系统中发挥一定的作用。我们考虑三个非线性系统,可以执行自主振荡:(i)一个单元组成的前馈和反馈回路,相当于一个标准的基序在遗传和神经网络;(ii)一个单位与分层异宿动力学,适合于描述瞬态过程,特别是在大脑中;和(iii)一个修改represilator,设计用于模拟瞬态细胞动力学。当动力学单元,属于这些类型之一,耦合在空间网格上,我们选择不同的耦合,这保证了拓扑相位的观察。我们分析了预期的边缘模式,其特征在于它们的拓扑不变量,并追求的依赖性的拓扑同步作为系统参数的函数,实施手征,非线性相互作用强度,和厄米特或非厄米特属性所涉及的有效哈密顿。在生物网络的背景下,稳定的时钟,稳定的生物量运输和稳定的过渡路径在异宿网络将是理想的功能时,他们的稳定性是基于非常有效的拓扑保护,对各种来源的噪音。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Hildegard Meyer-Ortmanns其他文献

Professorin Dr. Hildegard Meyer-Ortmanns的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Hildegard Meyer-Ortmanns', 18)}}的其他基金

Coupled heteroclinic networks
耦合异宿网络
  • 批准号:
    363137745
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Dynamically Generated Hierarchies in Games of Competition and the Role of Stochastic Fluctuations
竞争游戏中动态生成的层次结构和随机波动的作用
  • 批准号:
    290307074
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Physical Aging in Oscillatory and Excitable Systems
振荡和兴奋系统的物理老化
  • 批准号:
    250552008
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
On the Role of Frustration in Couplex Dynamical Systems
论挫折在耦合动力系统中的作用
  • 批准号:
    187035448
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Hierarchische Netzwerke: Dynamik und Evolution
分层网络:动力学和进化
  • 批准号:
    5413656
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Zintl Phases点缺陷结构与热电性能调控
  • 批准号:
    51771105
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Investigating liquid-like mineral phases in crowded media
研究拥挤介质中的液态矿物相
  • 批准号:
    EP/Y022653/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Controllable quantum phases in two-dimensional metal-organic nanomaterials
二维金属有机纳米材料中的可控量子相
  • 批准号:
    DP240102006
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
CAREER: The influence of cation substitution on the hydrous phases of the lower mantle
事业:阳离子取代对下地幔水相的影响
  • 批准号:
    2338444
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Elucidating the Formation and Evolution of Metastable Phases in Fluorite-Structured Ferroelectrics using Advanced Electron Microscopy
职业:使用先进电子显微镜阐明萤石结构铁电体中亚稳相的形成和演化
  • 批准号:
    2338558
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Quantifying molecular interactions linking disordered and ordered phases to predict crystallisation
量化连接无序相和有序相的分子相互作用以预测结晶
  • 批准号:
    EP/Z00005X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Designing and Probing Emergent Phases with Tunable Magnons in Graphene
职业:利用石墨烯中的可调磁振子设计和探测涌现相
  • 批准号:
    2339623
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Group IV Semiconductors Derived From Zintl Phases
Zintl 相衍生的 IV 族半导体
  • 批准号:
    2350483
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Discovery of Self-Assembled Network Phases And Metallic Nanostructures Driven by Confinement
限制驱动的自组装网络相和金属纳米结构的发现
  • 批准号:
    2411155
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of tensor network renormalization group method for high dimensions and new understanding of quantum liquid phases
高维张量网络重整化群方法的发展及对量子液相的新认识
  • 批准号:
    23H01092
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Designing topological superconductivity and correlated phases in Van der Waals materials
职业:设计范德华材料中的拓扑超导性和相关相
  • 批准号:
    2238748
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了