Efficient computational framework for uncertainty quantification of large-scale high-dimensional nonlinear stochastic systems
大规模高维非线性随机系统不确定性量化的高效计算框架
基本信息
- 批准号:527222589
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The challenges of large-scale high-dimensional nonlinear reliability analysis and Bayesian inversion come from the coupling of the high stochastic dimensions, the nonlinearities and the large-scale spatial domains in the forward models. To overcome these difficulties, this project aims to develop advanced stochastic finite element methods to efficiently and accurately solve large-scale high-dimensional nonlinear forward models, and perform corresponding reliability analysis and Bayesian inversion based on the obtained stochastic solutions. Specifically, this project is divided into the following five parts: 1) Develop efficient high-dimensional nonlinear SFEM: It remains a challenge to efficiently solve high-dimensional nonlinear stochastic problems due to the coupling of high dimensionalities of stochastic spaces and nonlinearities. To this end, high-dimensional nonlinear SFEMs are developed via combining the high-dimensional linear SFEMs developed in our previous work and a novel stochastic Newton method used for handling nonlinearities. 2) Develop domain decomposition-based large-scale SFEM: Another challenge is to efficiently solve high-dimensional nonlinear stochastic problems defined on large-scale spatial domains. To this end, introducing domain decomposition methods into the above high-dimensional nonlinear SFEM, stochastic domain decomposition-based parallel SFEMs are developed to solve large-scale high-dimensional nonlinear stochastic problems. 3) Develop SFEM-based reliability analysis: The estimation of limit state surfaces and failure probabilities for large-scale high-dimensional nonlinear reliability analysis is expensive. Based on the stochastic solutions obtained by the above SFEMs, we can cheaply and quickly generate a large number of sample realizations of the stochastic solutions. Thus, the limit state surfaces and the failure probabilities in reliability analysis are calculated efficiently and accurately. 4) Develop SFEM-based Bayesian inversion: Similarly, the high-accuracy evaluation of likelihood functions and posterior distributions for large-scale high-dimensional nonlinear Bayesian inversion requires solving a large number of forward stochastic models and is thus very expensive. Benefiting from a large number of sample realizations of the stochastic solutions obtained by the proposed SFEMs, the computational burden of repeatedly solving expensive forward models is readily avoided. 5) Benchmark problems and validation: To validate the methods proposed in the above parts, several benchmark problems are chosen in the context of solid mechanics. The computational accuracy and efficiency of the proposed methods are emphasized and compared with the reference solutions, where the reference stochastic solutions of forward models, the reference failure probabilities in reliability analysis and the reference posterior distributions in Bayesian inversion are solved using standard MCS with a large number of sample realizations.
大规模高维非线性可靠性分析和贝叶斯反演的挑战来自向前模型中高随机维度,非线性和大规模空间域的耦合。为了克服这些困难,该项目旨在开发先进的随机有限元方法,以有效,准确地求解大规模的高维非线性远期模型,并基于获得的随机解决方案执行相应的可靠性分析和贝叶斯反转。具体而言,该项目分为以下五个部分:1)开发有效的高维非线性SFEM:由于高维空间和非线性的高维度耦合,因此有效解决高维非线性随机问题仍然是一个挑战。为此,通过结合以前工作中开发的高维线性SFEM和一种用于处理非线性的新型随机牛顿方法,开发了高维的非线性SFEM。 2)开发基于域分解的大规模SFEM:另一个挑战是有效解决在大型空间域上定义的高维非线性随机问题。为此,开发了基于随机域分解的平行SFEM,将域分解方法引入上述高维非线性SFEM,以解决大型高维非线性随机问题。 3)开发基于SFEM的可靠性分析:大规模高维非线性可靠性分析的极限状态表面和故障概率的估计很昂贵。基于上述SFEM获得的随机解决方案,我们可以便宜并迅速产生大量随机溶液的样本实现。因此,有效,准确地计算了可靠性分析中极限状态表面和故障概率。 4)开发基于SFEM的贝叶斯倒置:同样,大型高维非线性贝叶斯反演的似然函数和后验分布的高临界性评估需要解决大量的正向随机模型,因此非常昂贵。受益于所提出的SFEM获得的随机解决方案的大量样品实现,很容易避免反复解决昂贵的前向模型的计算负担。 5)基准问题和验证:为了验证上述部分中提出的方法,在固体力学的背景下选择了几个基准问题。强调了所提出方法的计算准确性和效率,并将其与参考解决方案进行比较,在此,使用具有大量样品实现的标准MC,可以使用标准MCS求解前向模型的参考随机解,可靠性分析中的参考故障概率和贝叶斯反转的参考后验分布。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Udo Nackenhorst其他文献
Professor Dr.-Ing. Udo Nackenhorst的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Udo Nackenhorst', 18)}}的其他基金
Development of a Coupled BCHM-Model for Numerical Investigations of MICP treatment of Soil
开发用于 MICP 土壤处理数值研究的耦合 BCHM 模型
- 批准号:
428863833 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Sophisticated computational techniques for damage mechanics with mixed uncertain input fields
具有混合不确定输入场的损伤力学的复杂计算技术
- 批准号:
341840349 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Priority Programmes
Computational techniques on the stochastic excitation of rolling tires from the rough road surface contact
粗糙路面接触滚动轮胎随机激励计算技术
- 批准号:
317553749 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Numerical techniques for the simulation of complex biomechanical processes
模拟复杂生物力学过程的数值技术
- 批准号:
189200616 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
thermo-mechanical analysis of stationary rolling tires
静止滚动轮胎的热机械分析
- 批准号:
189716259 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Numerische Simulation des physiologischen Kontaktes im humanen Hüftgelenk
人体髋关节生理接触的数值模拟
- 批准号:
87181671 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
ALE-Interface-Kopplung für den transienten Profileingriff beim Rollkontakt
ALE 接口耦合,用于滚动接触期间的瞬态轮廓干预
- 批准号:
70061889 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
Effiziente numerische Lösungsverfahren für die dreidimensionale Finite Element Analyse von Elastomerbauteilen im Rollkontakt
滚动接触弹性体部件三维有限元分析的高效数值求解方法
- 批准号:
5386331 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Research Units
相似国自然基金
高效吸附分离二氧化碳的富胺磁性框架材料设计及其对磁场响应机理的研究
- 批准号:51872306
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
咪唑类金属有机框架复合材料对U(VI)的高效吸附及机理研究
- 批准号:21806001
- 批准年份:2018
- 资助金额:27.5 万元
- 项目类别:青年科学基金项目
高效自动并行的海洋模式计算框架研究
- 批准号:41776010
- 批准年份:2017
- 资助金额:71.0 万元
- 项目类别:面上项目
高分辨率大气环流模式动力框架的高效并行算法研究
- 批准号:61602477
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
随机参数动力系统不确定性量化的PDF/CDF方法框架及其高效算法设计
- 批准号:11571028
- 批准年份:2015
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: An Efficient Computational Framework for Data Driven Feedback Control
职业:数据驱动反馈控制的高效计算框架
- 批准号:
2142672 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
A Computational Framework Enabling Virtual Imaging Trials of 3D Quantitative Optoacoustic Tomography Breast Imaging
支持 3D 定量光声断层扫描乳腺成像虚拟成像试验的计算框架
- 批准号:
10665540 - 财政年份:2022
- 资助金额:
-- - 项目类别:
A Computational Framework Enabling Virtual Imaging Trials of 3D Quantitative Optoacoustic Tomography Breast Imaging
支持 3D 定量光声断层扫描乳腺成像虚拟成像试验的计算框架
- 批准号:
10367731 - 财政年份:2022
- 资助金额:
-- - 项目类别:
CRCNS US-German Research Proposal: Efficient representations of social knowledge structures for learning from a computational, neural and psychiatric perspective (RepSocKnow)
CRCNS 美德研究提案:从计算、神经和精神病学角度学习的社会知识结构的有效表示 (RepSocKnow)
- 批准号:
10688109 - 财政年份:2022
- 资助金额:
-- - 项目类别:
CRCNS US-German Research Proposal: Efficient representations of social knowledge structures for learning from a computational, neural and psychiatric perspective (RepSocKnow)
CRCNS 美德研究提案:从计算、神经和精神病学角度学习的社会知识结构的有效表示 (RepSocKnow)
- 批准号:
10612154 - 财政年份:2022
- 资助金额:
-- - 项目类别: