Efficient computational framework for uncertainty quantification of large-scale high-dimensional nonlinear stochastic systems

大规模高维非线性随机系统不确定性量化的高效计算框架

基本信息

项目摘要

The challenges of large-scale high-dimensional nonlinear reliability analysis and Bayesian inversion come from the coupling of the high stochastic dimensions, the nonlinearities and the large-scale spatial domains in the forward models. To overcome these difficulties, this project aims to develop advanced stochastic finite element methods to efficiently and accurately solve large-scale high-dimensional nonlinear forward models, and perform corresponding reliability analysis and Bayesian inversion based on the obtained stochastic solutions. Specifically, this project is divided into the following five parts: 1) Develop efficient high-dimensional nonlinear SFEM: It remains a challenge to efficiently solve high-dimensional nonlinear stochastic problems due to the coupling of high dimensionalities of stochastic spaces and nonlinearities. To this end, high-dimensional nonlinear SFEMs are developed via combining the high-dimensional linear SFEMs developed in our previous work and a novel stochastic Newton method used for handling nonlinearities. 2) Develop domain decomposition-based large-scale SFEM: Another challenge is to efficiently solve high-dimensional nonlinear stochastic problems defined on large-scale spatial domains. To this end, introducing domain decomposition methods into the above high-dimensional nonlinear SFEM, stochastic domain decomposition-based parallel SFEMs are developed to solve large-scale high-dimensional nonlinear stochastic problems. 3) Develop SFEM-based reliability analysis: The estimation of limit state surfaces and failure probabilities for large-scale high-dimensional nonlinear reliability analysis is expensive. Based on the stochastic solutions obtained by the above SFEMs, we can cheaply and quickly generate a large number of sample realizations of the stochastic solutions. Thus, the limit state surfaces and the failure probabilities in reliability analysis are calculated efficiently and accurately. 4) Develop SFEM-based Bayesian inversion: Similarly, the high-accuracy evaluation of likelihood functions and posterior distributions for large-scale high-dimensional nonlinear Bayesian inversion requires solving a large number of forward stochastic models and is thus very expensive. Benefiting from a large number of sample realizations of the stochastic solutions obtained by the proposed SFEMs, the computational burden of repeatedly solving expensive forward models is readily avoided. 5) Benchmark problems and validation: To validate the methods proposed in the above parts, several benchmark problems are chosen in the context of solid mechanics. The computational accuracy and efficiency of the proposed methods are emphasized and compared with the reference solutions, where the reference stochastic solutions of forward models, the reference failure probabilities in reliability analysis and the reference posterior distributions in Bayesian inversion are solved using standard MCS with a large number of sample realizations.
大规模高维非线性可靠性分析和贝叶斯反演的挑战来自于正演模型中的高维随机性、非线性和大规模空间域的耦合。为了克服这些困难,本项目旨在发展先进的随机有限元方法,以高效、准确地求解大规模高维非线性正演模型,并基于所获得的随机解进行相应的可靠性分析和贝叶斯反演。具体而言,本项目分为以下五个部分:1)开发高效的高维非线性随机有限元:由于随机空间的高维性和非线性的耦合,有效地解决高维非线性随机问题仍然是一个挑战。为此,高维非线性SFEM开发通过结合在我们以前的工作中开发的高维线性SFEM和一种新的随机牛顿方法用于处理非线性。2)开发基于区域分解的大规模随机有限元:另一个挑战是有效地解决定义在大规模空间域上的高维非线性随机问题。为此,将区域分解方法引入到上述高维非线性随机有限元中,发展了基于随机区域分解的并行随机有限元方法来求解大规模高维非线性随机问题。3)开发基于SFEM的可靠性分析:大规模高维非线性可靠性分析的极限状态曲面和失效概率的估计是昂贵的。基于上述SFEM得到的随机解,我们可以廉价而快速地生成随机解的大量样本实现。从而有效、准确地计算了可靠度分析中的极限状态面和失效概率。4)开发基于SFEM的贝叶斯反演:类似地,大规模高维非线性贝叶斯反演的似然函数和后验分布的高精度评估需要求解大量的前向随机模型,因此非常昂贵。受益于大量的样本实现所提出的SFEM获得的随机解,重复求解昂贵的正演模型的计算负担是很容易避免的。5)基准问题和验证:为了验证上述部分中提出的方法,在固体力学的背景下选择了几个基准问题。文中着重分析了所提方法的计算精度和效率,并与参考解进行了比较,其中正演模型的参考随机解、可靠性分析中的参考失效概率和贝叶斯反演中的参考后验分布均采用标准MCS,并具有大量的样本实现.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Udo Nackenhorst其他文献

Professor Dr.-Ing. Udo Nackenhorst的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Udo Nackenhorst', 18)}}的其他基金

Development of a Coupled BCHM-Model for Numerical Investigations of MICP treatment of Soil
开发用于 MICP 土壤处理数值研究的耦合 BCHM 模型
  • 批准号:
    428863833
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Sophisticated computational techniques for damage mechanics with mixed uncertain input fields
具有混合不确定输入场的损伤力学的复杂计算技术
  • 批准号:
    341840349
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Computational techniques on the stochastic excitation of rolling tires from the rough road surface contact
粗糙路面接触滚动轮胎随机激励计算技术
  • 批准号:
    317553749
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Numerical techniques for the simulation of complex biomechanical processes
模拟复杂生物力学过程的数值技术
  • 批准号:
    189200616
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
thermo-mechanical analysis of stationary rolling tires
静止滚动轮胎的热机械分析
  • 批准号:
    189716259
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Numerische Simulation des physiologischen Kontaktes im humanen Hüftgelenk
人体髋关节生理接触的数值模拟
  • 批准号:
    87181671
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
ALE-Interface-Kopplung für den transienten Profileingriff beim Rollkontakt
ALE 接口耦合,用于滚动接触期间的瞬态轮廓干预
  • 批准号:
    70061889
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Effiziente numerische Lösungsverfahren für die dreidimensionale Finite Element Analyse von Elastomerbauteilen im Rollkontakt
滚动接触弹性体部件三维有限元分析的高效数值求解方法
  • 批准号:
    5386331
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Research Units

相似国自然基金

物体运动对流场扰动的数学模型研究
  • 批准号:
    51072241
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: An Efficient Computational Framework for Data Driven Feedback Control
职业:数据驱动反馈控制的高效计算框架
  • 批准号:
    2142672
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CRCNS US-German Research Proposal: Efficient representations of social knowledge structures for learning from a computational, neural and psychiatric perspective (RepSocKnow)
CRCNS 美德研究提案:从计算、神经和精神病学角度学习的社会知识结构的有效表示 (RepSocKnow)
  • 批准号:
    10688109
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
CRCNS US-German Research Proposal: Efficient representations of social knowledge structures for learning from a computational, neural and psychiatric perspective (RepSocKnow)
CRCNS 美德研究提案:从计算、神经和精神病学角度学习的社会知识结构的有效表示 (RepSocKnow)
  • 批准号:
    10612154
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
A Computationally Efficient Approach to Predict Population Risk with Machine Learning
通过机器学习预测人口风险的高效计算方法
  • 批准号:
    10379613
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
A Modular Framework for Accurate, Efficient, and Reproducible Analysis of RNA-Seq Data
用于准确、高效和可重复分析 RNA-Seq 数据的模块化框架
  • 批准号:
    10238765
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
A Modular Framework for Accurate, Efficient, and Reproducible Analysis of RNA-Seq Data
用于准确、高效和可重复分析 RNA-Seq 数据的模块化框架
  • 批准号:
    10440402
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
CAREER: A Parallel and Efficient Computational Framework for Unified Volumetric Meshing in Large-Scale 3D/4D Anisotropy
职业生涯:大规模 3D/4D 各向异性中统一体积网格划分的并行高效计算框架
  • 批准号:
    1845962
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
A General and Efficient Framework for Computational Shape Analysis Through Geometric Distributions
通过几何分布进行计算形状分析的通用且有效的框架
  • 批准号:
    1819131
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Efficient mathematical and computational framework for biological 3D image data retrieval
协作研究:生物 3D 图像数据检索的高效数学和计算框架
  • 批准号:
    1614777
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Efficient mathematical and computational framework for biological 3D image data retrieval
协作研究:生物 3D 图像数据检索的高效数学和计算框架
  • 批准号:
    1614661
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了