Geometry of moduli spaces and non-abelian localization formal

模空间的几何和非阿贝尔局部化形式

基本信息

  • 批准号:
    09640124
  • 负责人:
  • 金额:
    $ 1.86万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1999
  • 项目状态:
    已结题

项目摘要

We have been studying the topology of hyperKahler quotients and symplectic quotients. The aim of the research is to understand the structures of various important moduli spaces, because many of these spaces are constructed as such kind of quotients. Recently the topology of symplectic quotients has been studied intensively by using Morse theory and equivariant cohomology theory. However, since hyperKahler quotients are non-compact, these methods do not work in general. So little is known about the topology of hyperKahler quotients.In the first year of this project we investigated many examples of hyperKahler quotients by tori. In the second year we proposed a conjecture about the ring structure of their cohomology and gave a partial answer. In the last year we proved the conjecture affirmatively. A hyperKahler quotient contains a union of symplectic quotients as its deformation retract. To prove the conjecture, it is important to show that these symplectic quotients intersect in a simple way.We also investigated some examples of hyperKahler quotients by non-abelian groups, especially a partial compactification of the cotangent bundle of the configuration space of points in the projective line. As a result we calculated the generating function of the intersection parings on the configuration spaces.
我们一直在研究超Kahler代数和辛代数的拓扑。研究的目的是了解各种重要的模空间的结构,因为这些空间中的许多空间被构造为这样的子空间。近年来,辛对偶的拓扑结构利用莫尔斯理论和等变上同调理论得到了广泛的研究.然而,由于超Kahler代数是非紧的,这些方法一般不起作用。所以我们对超Kahler代数的拓扑结构知之甚少,在这个项目的第一年,我们研究了许多由tori提出的超Kahler代数的例子。第二年我们提出了关于它们的上同调的环结构的一个猜想,并给出了部分答案。去年我们肯定地证明了这个猜想。一个超Kahler商包含一个辛对偶的并作为它的变形收缩核。为了证明这个猜想,重要的是要证明这些辛同余以一种简单的方式相交.我们还研究了一些非交换群的超Kahler同余的例子,特别是射影直线上点的位形空间的余切丛的部分紧化.由此我们计算了位形空间上交对的生成函数。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H. Konno: "Cohomology rings of toric hyperkahler manifolds"International Journal of Mathematics. (to appear)(accepted).
H. Konno:“环面超卡勒流形的上同调环”国际数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hiroshi Konno: "Cohomology rings of toric hyperKahler manifolds"International Journal of Mathematics. (accepted).
Hiroshi Konno:“环面超卡勒流形的上同调环”国际数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KONNO Hiroshi其他文献

KONNO Hiroshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KONNO Hiroshi', 18)}}的其他基金

Geometry of Ricci-flat manifolds and moment maps
Ricci 平坦流形的几何和矩图
  • 批准号:
    19540067
  • 财政年份:
    2007
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on Integrated Financial Risk Management Technologies : Integration of Market Risk and Credit Risk
综合金融风险管理技术研究:市场风险与信用风险的整合
  • 批准号:
    18310109
  • 财政年份:
    2006
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Ricci-flat manifolds and the global structure of their moduli spaces
里奇平坦流形及其模空间的全局结构
  • 批准号:
    15540062
  • 财政年份:
    2003
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Internationally diversified Investment using Mean-Absolute Deviation Model : Theory and Empirical Study
使用均值-绝对偏差模型进行国际多元化投资:理论与实证研究
  • 批准号:
    15310122
  • 财政年份:
    2003
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Portfolio Models for the Next Generation Fund Management
下一代基金管理的投资组合模型
  • 批准号:
    12480105
  • 财政年份:
    2000
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Quantitative Evaluation of Financial Risk
金融风险的定量评估
  • 批准号:
    11558046
  • 财政年份:
    1999
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Global Optimization Models on Industrial Systems and Efficient Approaches for Solving them
工业系统全局优化模型及其有效解决方法
  • 批准号:
    10450041
  • 财政年份:
    1998
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Algorithmic Studies on Portfolio Optimization and Asset Pricing and Transaction Cost
投资组合优化与资产定价和交易成本的算法研究
  • 批准号:
    09558046
  • 财政年份:
    1997
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Some Issues by Algae on Water Supply in Tropical Country
藻类对热带国家供水的一些问题
  • 批准号:
    09041130
  • 财政年份:
    1997
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for international Scientific Research
Financial Engineering Research or Asset Management and Pricing
金融工程研究或资产管理与定价
  • 批准号:
    08305002
  • 财政年份:
    1996
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)

相似海外基金

Homotopy types of spaces of rational curves on a toric manifold and related geometry
复曲面流形上有理曲线空间的同伦类型及相关几何
  • 批准号:
    18K03295
  • 财政年份:
    2018
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了