Research on partial differential equations and selfadjoint operators of mathematical physics

数学物理偏微分方程与自伴算子研究

基本信息

  • 批准号:
    09640158
  • 负责人:
  • 金额:
    $ 1.92万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

joint operators appearing in mathemmatical physics was carried out. Major attention was focused on the topics of linear and non-linears Schrodinger equations, non-linear wave equations and the spectral and scattering theory for Schrodinger operators and Pauli-operators. These problems were investigated by employing methods mainly from functional analysis, real-variable theory, Fourier analysis and micro-local analysis. As a result, the following new results were found :1. The fundamental solution of time dependent Schrodinger equations is smooth and bounded for t * 0 if the potential subquadratic, whereas it is nowhere C^1 if the potential superquadratically increasing at infinity. The fundamental solution of pertubations of harmonic oscillator enjoy the recurrence of singularities if the perturbation are sublinear whereas it in general disappears if the perturbations are superlinear.2. The fundamental solution remains continuous and bouned for a class of singular potentials including Coulomb potentials.3. The asymptotic behavior of the number of eiegnvalues accumulating to zero of two dimensional Pauli operators with non-homogeneous magnetic fields has been established.4. The low enegry limits of the scattering opertors for two dimensional Schrodinger opeartors with magnetic fields has been found. The asymptotic behavior of the scattering matrix when the magnetic field converges to so called magnetic string has been clarified.5. The effect of the magnetic fields to the tunneling in semi-classical limit has been measured and it is found that it largely depends on the smoothness of the magnetic fields.6. Semi-classical behavior of the spectral shift function for Schrodinger operators at the trapping energy has been clarified.7. Strichartz type estimate is established for a system of non-linear wave equation with different propagation speeds and its relation to the well-posedness of critical non-linear wave equation has been clarified.
对数学物理中出现的联合算子进行了研究。主要研究了线性和非线性薛定谔方程、非线性波动方程以及薛定谔算子和泡利算子的谱和散射理论。本文主要采用泛函分析、实变量理论、傅立叶分析和微域分析等方法对这些问题进行了研究。结果发现:1.当势次二次时,含时薛定谔方程的基本解在t*0处光滑有界,而当势能在无穷远处增加时,基本解不存在C^1。如果微扰是次线性的,则谐振子的基本解存在奇点递归;如果微扰是超线性的,则基本解一般消失。对于包括库仑势在内的一类奇异位势,基本解保持连续且有界。建立了具有非均匀磁场的二维Pauli算子的零点累加个数的渐近行为。发现了具有磁场的二维薛定谔算子的散射算符的能量下限。阐明了当磁场收敛到所谓的磁弦时,散射矩阵的渐近行为。在半经典极限下测量了磁场对隧道效应的影响,发现这在很大程度上取决于磁场的平稳性。阐明了薛定谔算符谱移位函数在俘获能区的半经典行为。建立了一类具有不同传播速度的非线性波动方程组的Strichartz估计,并阐明了它与临界非线性波动方程适定性的关系。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tohru Ozawa: "Space-time estimates for null-gauge forms and non-linear schrodinger equations" Differential and Integral Equations. 11. 279-292 (1998)
Tohru Ozawa:“零规范形式和非线性薛定谔方程的时空估计”微分方程和积分方程。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hideo Tamura: "Error estimate in operator norm of exponential product formula for propagators of parabolic equations" Osaka Mathematical Journal. 35. 751-770 (1998)
Hideo Tamura:“抛物型方程传播子的指数乘积公式的算子范数的误差估计”大阪数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kenji Yajima: "On the fundamental solution of a pertcerbed harmonic oscillators" Topological methods in Nonb wear Analysis. 9. 77-106 (1977)
Kenji Yajima:“关于受扰谐振子的基本解决方案”Nonb 磨损分析中的拓扑方法。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hideo Tamura: "Asymptotic distribution of cigenvalues for Pauli operators with nonconstant magnetic fields" Duke Mathematical Journal. 93. 535-574 (1998)
Hideo Tamura:“具有非常量磁场的泡利算子的 cigen 值的渐近分布”杜克数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
中村周(岡本久): "関数解析1.2(岩波講座・現代数学・基礎)" 岩波書店, 266 (1997)
Shu Nakamura(Hisashi Okamoto):“泛函分析 1.2(岩波课程/现代数学/基础)”岩波书店,266(1997)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAJIMA Kenji其他文献

東日本大震災から5年後の陸前高田市内仮設居住者の抱える問題に関する調査研究
东日本大地震5年后陆前高田市临时居民所面临问题的调查研究
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    HASUIKE Rina;KINOSHITA Koji;YAJIMA Kenji;TAKAGI Akiyoshi;ROKUGO Keitetsu;門脇恵太・宇佐美誠史・元田良孝
  • 通讯作者:
    門脇恵太・宇佐美誠史・元田良孝
EXAMINATION OF OBSTACLES AND COUNTERMEASURES WHEN UTILIZING NEW MAINTENANCE TECHNOLOGIES FOR CIVIL INFRASTRUCTURES
民用基础设施使用新维护技术时的障碍及对策研究

YAJIMA Kenji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAJIMA Kenji', 18)}}的其他基金

Mathematical Analysis of Quantum Physics
量子物理的数学分析
  • 批准号:
    22340029
  • 财政年份:
    2010
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical Analysis of Quantum Physics
量子物理的数学分析
  • 批准号:
    18340041
  • 财政年份:
    2006
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical Analysis of Quantum Physics
量子物理的数学分析
  • 批准号:
    14340039
  • 财政年份:
    2002
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Comprehensive study of differential equations
微分方程综合研究
  • 批准号:
    11304006
  • 财政年份:
    1999
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)

相似海外基金

Spectral Theory and Dynamics of Ergodic Schrodinger Operators
遍历薛定谔算子的谱理论和动力学
  • 批准号:
    1764154
  • 财政年份:
    2018
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Continuing Grant
Spectral theory and resonance for Schrodinger operators
薛定谔算子的谱理论和共振
  • 批准号:
    92997-2010
  • 财政年份:
    2015
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Discovery Grants Program - Individual
Spectral theory of ergodic Schrodinger operators and related models
遍历薛定谔算子的谱论及相关模型
  • 批准号:
    1401204
  • 财政年份:
    2014
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Continuing Grant
Spectral theory and resonance for Schrodinger operators
薛定谔算子的谱理论和共振
  • 批准号:
    92997-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Discovery Grants Program - Individual
Spectral Theory for Decaying Oscillatory Schrodinger Operators
衰变振荡薛定谔算子的谱理论
  • 批准号:
    1301582
  • 财政年份:
    2013
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Standard Grant
Spectral theory and resonance for Schrodinger operators
薛定谔算子的谱理论和共振
  • 批准号:
    92997-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Discovery Grants Program - Individual
Spectral theory of ergodic Schrodinger operators and related models
遍历薛定谔算子的谱论及相关模型
  • 批准号:
    1101578
  • 财政年份:
    2011
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Continuing Grant
Spectral theory and resonance for Schrodinger operators
薛定谔算子的谱理论和共振
  • 批准号:
    92997-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Discovery Grants Program - Individual
Spectral theory and resonance for Schrodinger operators
薛定谔算子的谱理论和共振
  • 批准号:
    92997-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Discovery Grants Program - Individual
The study of the spectral theory of Schrodinger operators
薛定谔算子谱理论的研究
  • 批准号:
    333069-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Postgraduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了