Spectral theory and resonance for Schrodinger operators
薛定谔算子的谱理论和共振
基本信息
- 批准号:92997-2010
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research is about spectral and scattering theory of Schrödinger Operators, and related topics in PDE and Geometry. In recent years I have focused on proving the existence of absolutely continuous spectrum for discrete Schrödinger operators whose behavior at infinity is irregular. The primary examples of such operators are Schrödinger operators with random potentials.
One motivation for this work is the extended states conjecture, a big unsolved problem in the field of random Schrödinger operators. This conjecture asserts for the Anderson model on the integer lattice in dimensions three or higher there is some absolutely continuous spectrum at low disorder. The physical meaning of this conjecture is that a disordered solid should have some conducting energies provided the disorder is sufficiently low. The only situation where this conjecture has been proved is when the integer lattice is replaced with a tree. The original proof is due to Abel Klein. In my work with Hasler and Spitzer, I found a new proof of this result, and am proposing to use ideas from this proof to study a series of problems that share some of the difficulties of working on the integer lattice. In particular, I am now in a position to handle some graphs with loops of unbounded length. I also plan to combine our method with operator theory techniques to study operators on the lattice with slowly decaying random potentials.
I am interested in some problems involving resonances, or scattering poles. I am proposing to study a problem involving the positions of resonances and one involving the long time behavior of resonant states.
我的研究方向是Schrödinger算子的光谱和散射理论,以及PDE和几何的相关课题。近年来,我致力于证明在无穷远处行为不规则的离散Schrödinger算子的绝对连续谱的存在性。这类算子的主要例子是具有随机势的Schrödinger算子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Froese, Richard其他文献
Froese, Richard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Froese, Richard', 18)}}的其他基金
Spectral theory and resonances for Schrödinger operators
薛定谔算子的谱理论和共振
- 批准号:
RGPIN-2016-03748 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Spectral theory and resonances for Schrödinger operators
薛定谔算子的谱理论和共振
- 批准号:
RGPIN-2016-03748 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Spectral theory and resonances for Schrödinger operators
薛定谔算子的谱理论和共振
- 批准号:
RGPIN-2016-03748 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Spectral theory and resonances for Schrödinger operators
薛定谔算子的谱理论和共振
- 批准号:
RGPIN-2016-03748 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Spectral theory and resonances for Schrödinger operators
薛定谔算子的谱理论和共振
- 批准号:
RGPIN-2016-03748 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Spectral theory and resonance for Schrodinger operators
薛定谔算子的谱理论和共振
- 批准号:
92997-2010 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Spectral theory and resonance for Schrodinger operators
薛定谔算子的谱理论和共振
- 批准号:
92997-2010 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Spectral theory and resonance for Schrodinger operators
薛定谔算子的谱理论和共振
- 批准号:
92997-2010 - 财政年份:2011
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Spectral theory and resonance for Schrodinger operators
薛定谔算子的谱理论和共振
- 批准号:
92997-2010 - 财政年份:2010
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Spectral and scattering theory for elliptic operations
椭圆运算的光谱和散射理论
- 批准号:
92997-2005 - 财政年份:2009
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
- 批准号:82371997
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
- 批准号:LY21E080004
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
高阶微分方程的周期解及多重性
- 批准号:11501240
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
四维流形上的有限群作用与奇异光滑结构
- 批准号:11301334
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
- 批准号:
10727356 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Improving Recruitment, Engagement, and Access for Community Health Equity for BRAIN Next-Generation Human Neuroimaging Research and Beyond (REACH for BRAIN)
改善 BRAIN 下一代人类神经影像研究及其他领域的社区健康公平的招募、参与和获取 (REACH for BRAIN)
- 批准号:
10730955 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Age-related differences in neurobiological systems supporting emotion
支持情绪的神经生物系统与年龄相关的差异
- 批准号:
10606216 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Information-Theoretic Surprise-Driven Approach to Enhance Decision Making in Healthcare
信息论惊喜驱动方法增强医疗保健决策
- 批准号:
10575550 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Functional and behavioral dissection of higher order thalamocortical circuits in schizophrenia.
精神分裂症高阶丘脑皮质回路的功能和行为解剖。
- 批准号:
10633810 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Peri-ictal respiratory and arousal disturbances in focal epilepsy: Role of the brainstem
局灶性癫痫发作期间的呼吸和觉醒障碍:脑干的作用
- 批准号:
10799997 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Multidimensional brain connectome features of depression and anxiety
抑郁和焦虑的多维脑连接组特征
- 批准号:
10571512 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
The Effect of Sex Dimorphisms on TBI Injury and Recovery
性别二态性对 TBI 损伤和恢复的影响
- 批准号:
10643320 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Brain Connectivity Changes with Spinal Cord Stimulation Treatment of Chronic Pain: A Resting State NIRS/EEG Study
慢性疼痛的脊髓刺激治疗引起的大脑连接变化:静息状态 NIRS/EEG 研究
- 批准号:
10701130 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Neurocognitive Predictors of Anxiety Risk Among Behaviorally Inhibited Children
行为抑制儿童焦虑风险的神经认知预测因素
- 批准号:
10661343 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别: