Nevanlinna theory and its applications
Nevanlinna理论及其应用
基本信息
- 批准号:09640180
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(A) Unicity Theorem. As a generalizaion of the Unicity Theorem of Nevanlinna, we obtained the following result.Theorem 1. Let f_1 and f_2 be two transcendental meromorphic functions in te complex plane sharing 5 small merornorphic functions in te complex plane a_1, ..., a_5 , such that a_j * *(j = 1,2,3,4).(I) If there is a permutation (p_1, p_2, p_3, p_4, p_5) of (1,2,3,4,5) such that the cross ratio [p_1, p_2, p_3, p_4] is a constant or(II) If there is a j (1<less than or equal> j<less than or equal> 5) such that delta(a_j, f_j) > 15/17, then f_1 f_2.(B) Value distribution of holomorphic curves. Let f = f_1, ..., f_<n+1>] be a transcendental and non- degenerate holomorphic curve from C into P^n (C).(1) We defined an asymptotic spot for f and clssified it into two types , the first kind and the second. Theorem 2. If the lower order lambda of f is finite, the number N of asymptotic spots different in general position and of first kind satisfies the following :N<less than or equal>n if lambda<1/2_n ; N<less than or equal> 2_n - 1 if 1/2n<less than or equal> lambda<1 ; N<less than or equal>2_<nlambda> if 1<less than or equaThis is a generalization of the famous boundary point theorem of Ahlfors.(2) We ameliorated the second fundamental theorem, the defect relation for holomorphic curves and by applying them we obtained some results on defects of holomporphic curves with maximal deficiency sum.Theorem 3. If _SIGMA^q_<j=1>delta(a_j, f) = 2N - n + 1 and if OMEGA < 1, then there are at least [(N - n)(n - 1)/n] + 1 vectors a in {a_I, ..., a_q} such that delta(a, f) = 1.(C) Applications to ordinary differential equation. For example we obtained the following result.Theorem 4. Let T(A) be the set of transcendental meromorphic solutions of the differential equation(omega^1) ^2 = A(z)(omega^2 - 1),where A(z) is rational, in the complex plane. Then one of the following (a), (b) and (c) holds :(a) T(A) = phi ; (b) #゚CT(A) 2 ; (c) #゚CT(A) = uncountable.
(A)唯一性定理。定理1.设f_1和f_2是TE复平面上的两个超越亚纯函数,在TE复平面a_1,…,a_5中分担5个小的亚纯函数,使得a_j**(j=1,2,3,4)(I)(p_1,p_2,p_3,p_4,p_5)有(1,2,3,4,5)的一个排列(p_1,p_2,p_3,p_4,p_5)使得[p_1,p_2,p_3,p_1,p_2,p_4,p_5]的交叉比[p_1,p_2,p_3,.P_4]是一个常量或(Ii)如果存在j(1<;小于或等于>;j<;小于或等于>;5)使得Delta(a_j,f_j)>;15/17,然后f_1 f_2。(B)全纯曲线的值分布。设f=f_1,…,f_<;n+1>;是从C到P^n(C)的超越非退化全纯曲线。(1)定义了f的一个渐近点,并将其分为两类:第一类和第二类。定理2.如果f的低阶lambda是有限的,则在一般位置不同的第一类渐近点的个数N满足以下条件:N<;小于等于-gt;n如果lambda;lt;1/2_n;N<;小于或等于>;2_n-1,如果1/2n<;小于或等于>;这是Ahlfors著名的边界点定理的推广。(2)改进了第二个基本定理--全纯曲线的亏量关系,并应用它们得到了关于亏量和最大的全纯曲线的亏量的一些结果。1,则在{ai,…,a_q}中至少存在[(N-n)(n-1)/n]+1个向量a,使得Delta(a,f)=1。(C)应用于常微分方程。例如,我们得到了如下结果。定理4.设T(A)是复平面上微分方程(omega^1)^2=A(Z)(omega^2-1)的超越亚纯解集,其中A(Z)是有理的。则下列(A)、(B)和(C)之一成立:(A)T(A)=Phi;(B)#゚CT(A)2;(C)#゚CT(A)=不可数。
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nobushige Toda: "On the fine cluster set of holomorphic curves" Bulletin of Nagoya Institute of Technology. 49. 123-130 (1998)
Nobushige Toda:“论全纯曲线的细簇集”名古屋工业大学通报。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Katsuya Ishizaki, Kazuya Tohge: "On the complex oscillation of some linear differential equations" Journal of Mathematical Analysis and Applications. 206. 503-517 (1997)
Katsuya Ishizaki、Kazuya Tohge:“关于某些线性微分方程的复振荡”数学分析与应用杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Nobushige Toda: "On the number of asymptolic pointo of holomorphic" Proceedings of the Japan Academy. 73. 176-180 (1997)
户田信茂:《论全纯的渐近点数》日本学士院学报。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Nobushige Toda: "On the fine cluster set of holomorphic curves" Bulltin of Nagoya Institute of Technology. 49. 123-130 (1998)
Nobushige Toda:“论全纯曲线的精细簇集”名古屋工业大学公告。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Nobushige Toda: "On the second fundamental inequality for holomorphic curves" Bulltin of Nagoya Institute of Technology. 50. 123-135 (1999)
Nobushige Toda:“关于全纯曲线的第二个基本不等式”名古屋工业大学公告。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TODA Nobushige其他文献
TODA Nobushige的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TODA Nobushige', 18)}}的其他基金
Value distribution of meromorphic functions or holomorphic curves and its applications
亚纯函数或全纯曲线的值分布及其应用
- 批准号:
11640164 - 财政年份:1999
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Development of differential geometric study of surfaces starting from the value distribution of the Gauss map
从高斯图的值分布出发进行曲面微分几何研究的发展
- 批准号:
23K03086 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on value distribution properties of meromorphic functions generated by a wide variety of series and an investigation into their possible algebraic analogues
对各种级数生成的亚纯函数的值分布特性的研究及其可能的代数类似物的研究
- 批准号:
22K03335 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Value-distribution theory of zeta and multiple zeta functions
zeta 和多重 zeta 函数的值分布理论
- 批准号:
22K03267 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Value distribution of L-functions in the critical strip
临界带中 L 函数的值分布
- 批准号:
565498-2021 - 财政年份:2021
- 资助金额:
$ 1.92万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Study on estimation accuracy of return level of hydrological values by applying Metastatistical Extreme Value Distribution and its
应用元统计极值分布估算水文值回归水平的精度研究
- 批准号:
21K05831 - 财政年份:2021
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Value-Distribution of Logarithmic Derivatives of L-functions
L 函数的对数导数的值分布
- 批准号:
551817-2020 - 财政年份:2020
- 资助金额:
$ 1.92万 - 项目类别:
University Undergraduate Student Research Awards
Study of value distribution of Gauss maps and its applications to global property of immersed surfaces in space forms
高斯图值分布及其在空间形式浸没曲面全局特性中的应用研究
- 批准号:
19K03463 - 财政年份:2019
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New developments of higher dimensional value distribution theory and the fundamentals of complex analysis in several variables
高维值分布理论的新进展和多变量复杂分析的基础
- 批准号:
19K03511 - 财政年份:2019
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Diophantine Approximation and Value Distribution Theory at the interface of Arithmetic and Complex Hyperbolic Geometry: A Research Workshop with Minicourse
算术与复杂双曲几何界面的丢番图近似和值分布理论:迷你课程研究研讨会
- 批准号:
1904332 - 财政年份:2019
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Value-Distribution of Dirichlet L-functions
Dirichlet L 函数的值分布
- 批准号:
538455-2019 - 财政年份:2019
- 资助金额:
$ 1.92万 - 项目类别:
University Undergraduate Student Research Awards