Regularity and Approximation of Solutions to Conservation Laws

守恒定律解的正则性和近似性

基本信息

  • 批准号:
    2306926
  • 负责人:
  • 金额:
    $ 38.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Hyperbolic conservation laws provide basic mathematical models for continuum physics, and are widely used by scientists and engineers, for instance, in the study of traffic flows and flame propagation fronts. There is a general expectation that these equations should be deterministic: knowing an initial configuration one should be able to uniquely predict the future evolution. However, recent mathematical advances point to the fact that this is not always true. A major goal of this project is to better understand in which situations the uniqueness of solutions can be guaranteed, compared with examples where multiple solutions occur, in one or more space dimensions. Based on these theoretical advances, the investigator will then provide new error bounds for a wide class of computational schemes, which are used in applications as predictive tools. A further research direction will be the accurate description of how solutions can lose regularity. In other words: what happens at the first instant of time when a new shock wave, such as a sudden alteration in pressure, is formed. The project will provide research training opportunities for graduate students and postdoctoral associates. The project will address some fundamental issues at the frontier of the current theory of hyperbolic conservation laws. New uniqueness or non-uniqueness results will be sought, in a wider class of weak solutions, possibly with unbounded variation. For one-dimensional hyperbolic conservation laws endowed with a strictly convex entropy, the investigator aims at establishing universal error estimates, valid for all approximation schemes which are compatible with the conservation equations and the entropy conditions. In addition, for various classes of nonlinear wave equations, a local asymptotic description of generic solutions will be provided, in a neighborhood of a point where a new singularity emerges.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
双曲守恒定律为连续介质物理提供了基本的数学模型,并被科学家和工程师广泛使用,例如,在交通流和火焰传播前沿的研究中。人们普遍期望这些方程应该是确定性的:知道初始配置应该能够唯一地预测未来的演化。然而,最近的数学进展表明,事实并非总是如此。该项目的一个主要目标是与在一个或多个空间维度中出现多个解决方案的示例相比,更好地了解在哪些情况下可以保证解决方案的唯一性。基于这些理论进展,研究人员将为各种计算方案提供新的误差范围,这些方案在应用中用作预测工具。进一步的研究方向将是准确描述解决方案如何失去规律性。换句话说:当形成新的冲击波(例如压力突然变化)时,在第一时刻会发生什么。该项目将为研究生和博士后提供研究培训机会。该项目将解决当前双曲守恒定律理论前沿的一些基本问题。将在更广泛的弱解决方案类别中寻求新的唯一性或非唯一性结果,可能具有无限的变化。对于赋予严格凸熵的一维双曲守恒定律,研究者的目标是建立通用误差估计,该估计对于与守恒方程和熵条件兼容的所有近似方案都有效。此外,对于各类非线性波动方程,将在新奇点出现的点附近提供通用解的局部渐近描述。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alberto Bressan其他文献

High order approximation of implicitly defined maps
Diffusion Approximations of Markovian Solutions to Discontinuous ODEs
Sugli atti di moto piu rigidi possibile
Markovian Solutions to Discontinuous ODEs
Self-consistent Feedback Stackelberg Equilibria for Infinite Horizon Stochastic Games
  • DOI:
    10.1007/s13235-019-00329-9
  • 发表时间:
    2019-09-30
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Alberto Bressan;Yilun Jiang
  • 通讯作者:
    Yilun Jiang

Alberto Bressan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alberto Bressan', 18)}}的其他基金

Singularities and Error Bounds for Hyperbolic Equations
双曲方程的奇点和误差界
  • 批准号:
    2006884
  • 财政年份:
    2020
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant
Conference on Hyperbolic Problems
双曲问题会议
  • 批准号:
    1764156
  • 财政年份:
    2018
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant
Models of Controlled Biological Growth
受控生物生长模型
  • 批准号:
    1714237
  • 财政年份:
    2017
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant
Hyperbolic Conservation Laws and Applications
双曲守恒定律及其应用
  • 批准号:
    1411786
  • 财政年份:
    2014
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant
Problems of Nonlinear Control
非线性控制问题
  • 批准号:
    1108702
  • 财政年份:
    2011
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant
New problems in nonlinear control
非线性控制的新问题
  • 批准号:
    0807420
  • 财政年份:
    2008
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant
Hyperbolic Systems of Conservation Laws
守恒定律的双曲系统
  • 批准号:
    0505430
  • 财政年份:
    2005
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant

相似海外基金

Feasibility of Sample Average Approximation Solutions
样本平均近似解的可行性
  • 批准号:
    545823-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Feasibility of Sample Average Approximation Solutions
样本平均近似解的可行性
  • 批准号:
    545823-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Feasibility of Sample Average Approximation Solutions
样本平均近似解的可行性
  • 批准号:
    545823-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Approximation of Singular Solutions to Nonlocal and Nonlinear Models
非局部和非线性模型奇异解的逼近
  • 批准号:
    1720213
  • 财政年份:
    2017
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Continuing Grant
Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
  • 批准号:
    RGPIN-2014-04642
  • 财政年份:
    2017
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Discovery Grants Program - Individual
Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
  • 批准号:
    RGPIN-2014-04642
  • 财政年份:
    2016
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Discovery Grants Program - Individual
Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
  • 批准号:
    RGPIN-2014-04642
  • 财政年份:
    2015
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Discovery Grants Program - Individual
Time-periodic solutions with internal and boundary layers to singularly perturbed parabolic problems: Existence, approximation and domain of attraction
奇扰动抛物线问题的具有内部层和边界层的时间周期解:存在性、近似性和吸引域
  • 批准号:
    259134773
  • 财政年份:
    2014
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Research Grants
Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
  • 批准号:
    RGPIN-2014-04642
  • 财政年份:
    2014
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Discovery Grants Program - Individual
"AF:Small:Efficient and reliable low-rank approximation techniques and fast solutions to large sparse linear equations"
“AF:Small:高效可靠的低秩逼近技术和大型稀疏线性方程的快速解”
  • 批准号:
    1319312
  • 财政年份:
    2013
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了