On the construction and classification of the finite geometry
论有限几何的构造与分类
基本信息
- 批准号:09640306
- 负责人:
- 金额:$ 1.15万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Geometrical constructions in homotopy sets were studied. We obtained results on the GAMMA-Whitehead product and the GAMMA-Hopf construction. We introduced the transformation between pairings and copairings and showed its applications. We obtained a formula for the smash product. We obtained a generalization of the Hardie-Jansen product and studied its properties. Dual results are also studied.For geometrical construction in operator algebras, Tomita-Takesaki theory was studied. We obtained results on unbounded C^*seminorms on *-algebra and standard weights which enable us to develop unbounded Tomita-Takesaki theory.We constructed explicit examples of surfaces in affine spaces of dimension three and four. We gave a necessary and sufficient condition on surfaces in a three-dimensional affine space to be metric when the surfaces have non-zero constant Gauss-Kronecker curvature.The cohomology of mapping class groups was studied. We obtained a relation among periodic automorphisms of closed surfaces and the eta-invariant of their mapping tori. We also obtained various vanishing theorems of mod 2 Morita-Mumford classes.The Schur ring of product type was characterized by the existence of a subgroup of a collineation group. The existence of a Schur ring of produt difference set type is characterized by a finite projective plane of order n with a collineation group of order n(n - 1).
研究了同伦集合中的几何构造。我们得到了关于<$MA-Whitehead积和<$MA-Hopf构造的结果。介绍了对偶与余对偶之间的变换及其应用。我们得到了一个smash乘积的公式。得到了Hardie-Jansen积的一个推广,并研究了它的性质.对于算子代数的几何构造,研究了Tomita-Takesaki理论.我们得到了关于 *-代数和标准权的无界C^* 范数的结果,这些结果使我们能够发展无界Tomita-Takesaki理论,我们构造了三维和四维仿射空间中曲面的显式例子。给出了三维仿射空间中具有非零常Gauss-Kronecker曲率的曲面为度量的充要条件,并研究了映射类群的上同调.得到了闭曲面的周期自同构与其映射环面的η-不变量之间的关系。我们还得到了mod 2 Morita-Mumford类的各种消失定理,并利用直射群的子群的存在性刻画了乘积型Schur环。通过n阶有限射影平面与n(n - 1)阶共线群刻画了乘积差集型Schur环的存在性.
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.Inoue: "Standard systems for semifinite O-algebras" Proc.Amer.Math.Soc.128. 3303-3312 (1997)
A.Inoue:“半有限 O 代数的标准系统”Proc.Amer.Math.Soc.128。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Inoue: "Tomita-Takesaki Theory in Algebras of Unbounded Operators" Lecture Notes in Mathematics 1699, Springer. (1998)
A.Inoue:“无界算子代数中的 Tomita-Takesaki 理论”数学讲义 1699,Springer。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N.Oda and T.Shimizu: "Transformation between pairings" Fukuoka Univ.Sci.Reports. 28(2). 53-64 (1998)
N.Oda 和 T.Shimizu:“配对之间的转变”福冈大学科学报告。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Akita: "Euler characteristics of Coxeter groups, PL-triangulations of closed manifolds, and cohomology of subgroups of Artin groups" Journal of the London Mathematical Society. (to appear).
T.Akita:“Coxeter 群的欧拉特征、闭流形的 PL 三角剖分以及 Artin 群子群的上同调”《伦敦数学会杂志》。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
井上淳, J.P.Antoine, 荻秀和: "Standard generalized vectors for partial O^*-algebras" Ann.Inst.H.Poincare. 67. 223-258 (1997)
Jun Inoue、J.P.Antoine、Hidekazu Ogi:“部分 O^*-代数的标准广义向量”Ann.Inst.H.Poincare 67. 223-258 (1997)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ODA Nobuyuki其他文献
ODA Nobuyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ODA Nobuyuki', 18)}}的其他基金
A study on homotopy sets and families of homotopy invariant subsets
同伦集和同伦不变子集族的研究
- 批准号:
15K04884 - 财政年份:2015
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on function spaces defined by the exponential topology and homotopy invariants
指数拓扑和同伦不变量定义的函数空间研究
- 批准号:
23540115 - 财政年份:2011
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study of stable Hopf invariants and Hopf constructions
稳定Hopf不变量和Hopf构造的研究
- 批准号:
19540106 - 财政年份:2007
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on pairings
配对研究
- 批准号:
04640111 - 财政年份:1992
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Study on algebraic・topological・analytic K theory
代数·拓扑·解析K理论研究
- 批准号:
63540081 - 财政年份:1988
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2314082 - 财政年份:2023
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2203785 - 财政年份:2022
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
Equivariant Homotopy-Invariant Commutative Algebra
等变同伦不变交换代数
- 批准号:
2737776 - 财政年份:2022
- 资助金额:
$ 1.15万 - 项目类别:
Studentship
Homological algebra in homotopy type theory
同伦型理论中的同调代数
- 批准号:
574650-2022 - 财政年份:2022
- 资助金额:
$ 1.15万 - 项目类别:
University Undergraduate Student Research Awards
Homotopy theory for Hopfological algebra
Hopfological 代数的同伦理论
- 批准号:
20K03579 - 财政年份:2020
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Equivariance and Higher Algebra in Motivic Homotopy Theory
动机同伦理论中的等变性和高等代数
- 批准号:
1761718 - 财政年份:2017
- 资助金额:
$ 1.15万 - 项目类别:
Continuing Grant
Derived Localisation in Algebra and Homotopy Theory
代数和同伦理论中的导出局域化
- 批准号:
EP/N016505/1 - 财政年份:2016
- 资助金额:
$ 1.15万 - 项目类别:
Research Grant
Derived localisation in algebra and homotopy theory
代数和同伦理论中的导出局域化
- 批准号:
EP/N015452/1 - 财政年份:2016
- 资助金额:
$ 1.15万 - 项目类别:
Research Grant
Equivariance and Higher Algebra in Motivic Homotopy Theory
动机同伦理论中的等变性和高等代数
- 批准号:
1508096 - 财政年份:2015
- 资助金额:
$ 1.15万 - 项目类别:
Continuing Grant