Derived localisation in algebra and homotopy theory

代数和同伦理论中的导出局域化

基本信息

  • 批准号:
    EP/N015452/1
  • 负责人:
  • 金额:
    $ 40.44万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

We begin to get acquainted with localisation (albeit not under this name) while in high school. Consider the set N of natural numbers: 0, 1,2,3,... Two natural numbers could be added, but they cannot always be subtracted: 1-2 is not a natural number. We say that N forms a monoid; it is commutative because a sum of two natural numbers does not depend on the order in which they are added. It is useful to have an algebraic structure that accommodates subtraction as well as addition; this is how the set of integers Z is constructed out of natural numbers; essentially, negatives are simply added to the existing elements. We say that Z is a (still commutative) group and it is a group completion of the monoid N.There are other similar examples: consider Z with the operation of multiplication (rather than addition as above). Again, it is a commutative monoid and its completion is the set Q of rational numbers.Note that in the last example Z supports two structures: addition and multiplication, suitably compatible. A formalization of this is called a (commutative) ring. On the other hand, Q is more than a ring: it is a field, which means that all non-zero element of it are invertible. The field Q is called the field of fractions of Z, because its elements could indeed be viewed as fraction with integer numerator and denominator.Group completions of monoids and fields of fractions of rings are examples of localization. In the present project we concentrate on localization of rings, or or more general structures called differential graded rings. Given a commutative ring A and a collection S of elements in A one can try to formally invert it, or localise at S. For example, the localization of Z at the set of all non-zero integers produces Q. This is one of the most fundamental and simple procedures in commutative algebra; it serves as an underpinning of advanced fields of pure mathematics, such as algebraic geometry, and is indispensable as a tool for proving theorems. Commutative localisation has been well understood for a long time.In contrast, our understanding of localization of noncommutative rings (such as a ring of square matrces) is more patchy; various useful constructions, such as forming a field of fractions, are either impossible or only hold under severe constraints. On the other hand, noncommutative localization is very important, for example it could be said that the whole subject of homotopy theory (the study of those properties of spaces which do not change under continuous deformation) revolves around localization of a certain category (which is a generalization of a noncommutative algebra).The main insight of the present project, which builds on a recent work by the proposers, is that once the category of noncommutative rings is suitably extended, the formal properties of commutative localization are almost completely restored.The goal of the present project is to exploit the consequences of this idea, extend it suitably and derive consequences in algebra, topology and category theory.
我们开始熟悉本地化(虽然不是在这个名字下),而在高中。考虑自然数的集合N:0,1,2,3,.两个自然数可以相加,但不能总是相减:1-2不是自然数。我们说N形成幺半群;它是可交换的,因为两个自然数的和不依赖于它们相加的顺序。有一个代数结构,既可以做减法,也可以做加法,这是用自然数构造整数集合Z的方法;本质上,负数只是简单地加到现有的元素上。我们说Z是一个(仍然是交换的)群,并且它是么半群N的一个群完成。还有其他类似的例子:考虑Z的乘法运算(而不是上面的加法运算)。同样,它是一个交换幺半群,它的完备化是有理数的集合Q。注意,在最后一个例子中,Z支持两种结构:加法和乘法,适当地兼容。这种形式化称为(交换)环。另一方面,Q不仅仅是一个环:它是一个域,这意味着它的所有非零元素都是可逆的。域Q被称为Z的分数域,因为它的元素确实可以被看作是具有整数分子和分母的分数。幺半群的群完备化和环的分数域都是局部化的例子。在本项目中,我们集中在局部化的环,或或更一般的结构称为微分分次环。给定一个交换环A和A中元素的集合S,我们可以尝试形式上将它反转,或者局部化在S。例如,Z在所有非零整数的集合上的局部化产生Q。这是交换代数中最基本和最简单的过程之一;它是纯数学高级领域的基础,如代数几何,并且是证明定理不可或缺的工具。交换局部化在很长一段时间内已经得到了很好的理解,相比之下,我们对非交换环(如平方矩阵环)的局部化的理解则比较零散;各种有用的构造,如形成一个分数域,要么是不可能的,要么只有在严格的约束下才成立。另一方面,非对易局部化是非常重要的,例如,可以说,同伦理论的整个主题(研究在连续变形下不发生变化的空间的性质)围绕着某个范畴的局部化(这是一个推广的非交换代数)。本项目的主要见解,它建立在最近的工作,由提案人,本文的目标是利用这一思想的结果,将其适当地推广,并在代数、拓扑和范畴论中得到相应的结果。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Homological epimorphisms, homotopy epimorphisms and acyclic maps
同伦表态、同伦表态和无环映射
  • DOI:
    10.1515/forum-2019-0249
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Chuang J
  • 通讯作者:
    Chuang J
Homological epimorphisms and homotopy epimorphisms
同伦外态和同伦外态
  • DOI:
    10.48550/arxiv.1908.11283
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chuang Joe
  • 通讯作者:
    Chuang Joe
Maurer-Cartan moduli and theorems of Riemann-Hilbert type
Maurer-Cartan 模量和 Riemann-Hilbert 型定理
  • DOI:
    10.48550/arxiv.1802.02549
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chuang Joseph
  • 通讯作者:
    Chuang Joseph
The global derived period map
全球衍生周期图
  • DOI:
    10.1016/j.aim.2019.06.022
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Di Natale C
  • 通讯作者:
    Di Natale C
Homotopy theory of monoids and derived localization
幺半群的同伦理论和派生局域化
  • DOI:
    10.48550/arxiv.1810.00373
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chuang Joe
  • 通讯作者:
    Chuang Joe
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrey Lazarev其他文献

Homotopy relative Rota-Baxter Lie algebras, triangular L∞-bialgebras and higher derived brackets

Andrey Lazarev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrey Lazarev', 18)}}的其他基金

Rank functions on triangulated categories, homotopy theory and representations of finite groups
三角范畴的秩函数、同伦理论和有限群的表示
  • 批准号:
    EP/T029455/1
  • 财政年份:
    2020
  • 资助金额:
    $ 40.44万
  • 项目类别:
    Research Grant
Workshop: Homotopical algebra and geometry
研讨会:同伦代数和几何
  • 批准号:
    EP/M017001/1
  • 财政年份:
    2015
  • 资助金额:
    $ 40.44万
  • 项目类别:
    Research Grant
Homological algebra of Feynman graphs
费曼图的同调代数
  • 批准号:
    EP/J008451/1
  • 财政年份:
    2012
  • 资助金额:
    $ 40.44万
  • 项目类别:
    Research Grant
Maurer-Cartan moduli and homotopy theory
Maurer-Cartan 模量和同伦理论
  • 批准号:
    EP/I014012/1
  • 财政年份:
    2011
  • 资助金额:
    $ 40.44万
  • 项目类别:
    Research Grant
Modular operads and topological field theories
模运算和拓扑场论
  • 批准号:
    EP/F031513/1
  • 财政年份:
    2008
  • 资助金额:
    $ 40.44万
  • 项目类别:
    Research Grant

相似海外基金

Determining how sub-cellular localisation of interleukin-1alpha regulates immunity.
确定 IL-1α 的亚细胞定位如何调节免疫。
  • 批准号:
    BB/Y004876/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.44万
  • 项目类别:
    Research Grant
The Need for Speed: Understanding the Importance of Different ELF3 Nuclear Localisation Mechanisms
对速度的需求:了解不同 ELF3 核定位机制的重要性
  • 批准号:
    BB/Z514998/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.44万
  • 项目类别:
    Fellowship
Developing broken power line localisation devices with added grid sensing
开发带有电网感应功能的断线定位装置
  • 批准号:
    IE230100635
  • 财政年份:
    2023
  • 资助金额:
    $ 40.44万
  • 项目类别:
    Early Career Industry Fellowships
Better localisation for epilepsy surgery by optimising simultaneous EEG and functional MRI recordings at 7T
通过优化 7T 同步脑电图和功能性 MRI 记录,更好地定位癫痫手术
  • 批准号:
    2886505
  • 财政年份:
    2023
  • 资助金额:
    $ 40.44万
  • 项目类别:
    Studentship
Terahertz Backscattering Device for High-Resolution and Single-shot Localisation
用于高分辨率和单次定位的太赫兹后向散射装置
  • 批准号:
    NI230100096
  • 财政年份:
    2023
  • 资助金额:
    $ 40.44万
  • 项目类别:
    National Intelligence and Security Discovery Research Grants
Localisation technology supporting immersive pedestrian navigation and outdoor experiences.
支持沉浸式行人导航和户外体验的定位技术。
  • 批准号:
    2811109
  • 财政年份:
    2023
  • 资助金额:
    $ 40.44万
  • 项目类别:
    Studentship
Control of cell migration and tissue morphogenesis via modulation of mRNA localisation.
通过调节 mRNA 定位来控制细胞迁移和组织形态发生。
  • 批准号:
    2895002
  • 财政年份:
    2023
  • 资助金额:
    $ 40.44万
  • 项目类别:
    Studentship
18F-PSMA-bioharmonophore conjugates: a smart PET/optical tracer for improved prostate cancer detection and localisation
18F-PSMA-生物配乐团缀合物:用于改进前列腺癌检测和定位的智能 PET/光学示踪剂
  • 批准号:
    2886605
  • 财政年份:
    2023
  • 资助金额:
    $ 40.44万
  • 项目类别:
    Studentship
Investigating fungal pathogen effector localisation within plant cells
研究植物细胞内真菌病原体效应器的定位
  • 批准号:
    2879242
  • 财政年份:
    2023
  • 资助金额:
    $ 40.44万
  • 项目类别:
    Studentship
Project Title: Improved spatial localisation of ultrasonic scan data on physical assets
项目名称:改进物理资产超声波扫描数据的空间定位
  • 批准号:
    2903271
  • 财政年份:
    2023
  • 资助金额:
    $ 40.44万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了