Mathematical Problems in Quantum Field Theory and Infinite-Dimensional Analysis
量子场论和无限维分析中的数学问题
基本信息
- 批准号:08454021
- 负责人:
- 金额:$ 5.44万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1996
- 资助国家:日本
- 起止时间:1996 至 1997
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1) Representations of canonical commutation relations (CCR) appearing in a (non-commutative) gauge theory on a non-simply connected region of R^3 have been analyzed indetail. These representations are realized by the set of the position and the physical momentum operators. Properties of the strongly continuous 1-parameter unitary groups generated by the physical momentum operators (commutation relations, irreducibility etc.) were clarified as well as connections to the Aharonov-Bohm effect, representations of quantum groups and quantum lattice gauge theory. Moreover, the coupling of the quantum system to a quantized radiation field was considered. As a result, new classes of representations of CCR were discovered on the tensor product Hibert space of L^2 (R^3) and the Fock space of the quantized radiation field. These are original discoveries.(2) A necessary and sufficient condition for two Dirac operators on the boson-fermion Fock space to strongly anticommute was characterized in terms of the strong anticommutativity of Dirac operators on the one-particle base Hilbert space.(3) A class of representations of CCR with infinite degrees of freedom (or indexed by an infinite dimensional Hilbert space) was constructed in connection with perturbation problem of embedded eigenvalues in quantum field models.(4) A new estimate for the groundstate energy of the Schrodinger operator was derived.
(1)详细分析了非对易规范理论中的正则对易关系(CCR)在R^3的非单连通区域上的表示。这些表示是通过位置和物理动量算符的集合来实现的。由物理动量算子生成的强连续单参数酉群的性质(对易关系、不可约性等)以及与Aharonov-Bohm效应、量子群的表示和量子格点规范理论的联系。此外,还考虑了量子系统与量子化辐射场的耦合。结果,在L^2(R^3)的张量积Hibert空间和量子化辐射场的Fock空间上发现了CCR的新的表示类。(2)利用单粒子基Hilbert空间上Dirac算符的强反对易性刻画了玻色子-费米子Fock空间上的两个Dirac算符强反对易的充要条件。(3)针对量子场模型中嵌入本征值的微扰问题,构造了一类具有无限自由度(或由无限维希尔伯特空间标引的)CCR的表示。(4)给出了薛定谔算符基态能量的新估计。
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Asao, Arai: "On the exrstence and unaqueness of a generalized spn-boson model" Journal of Functional Anolysts. 151. 455-503 (1997)
Asao,Arai:“论广义 spn-玻色子模型的存在性和唯一性”《功能分析学杂志》。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
新井朝雄: "場の量子論の数学的方法入門" 大阪大学 Osaka Mathematical Publications, 226 (1997)
新井朝雄:《量子场论的数学方法导论》大阪数学刊物,226(1997)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
新井 朝雄: "ヒルベルト空間と量子力学" 共立出版社, 276 (1997)
Asao Arai:《希尔伯特空间与量子力学》Kyoritsu Shuppansha,276(1997)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Asao Arai: "Strong anticommutativity of Dirac operators on boson-fermion Fock spaces and representations of a supersymmetry algebra." Mathematrsche Nachrochten. (in press). (1998)
Asao Arai:“狄拉克算子在玻色子-费米子福克空间和超对称代数表示上的强反交换性。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Asao Arai: "On the exostence and undqueness of graund states of a generalized spmboson model" Journal of Functional Analysis. 151. 455-503 (1997)
Asao Arai:“论广义 spmboson 模型的大态的存在性和不正当性”《泛函分析杂志》。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ARAI Asao其他文献
ARAI Asao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ARAI Asao', 18)}}的其他基金
Mathematical analysis on quantum fields
量子场的数学分析
- 批准号:
24540154 - 财政年份:2012
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Analysis of Quantum Fields
量子场的数学分析
- 批准号:
21540158 - 财政年份:2009
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Problems and Infinite Dimensional Analysis in Quantum Field Theory
量子场论中的数学问题和无限维分析
- 批准号:
17340032 - 财政年份:2005
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical Analysis of a System of a Dirac Particle Interacting With a Quantum Electronagnetid Field
狄拉克粒子与量子电磁场相互作用系统的数学分析
- 批准号:
13440039 - 财政年份:2001
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical Studies on Systems of Particles Interacting with Quantum Fields
粒子与量子场相互作用系统的数学研究
- 批准号:
11440036 - 财政年份:1999
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
相似海外基金
Quiver Gauge Theory, String Theory and Quantum Field Theory.
箭袋规范理论、弦理论和量子场论。
- 批准号:
2890913 - 财政年份:2023
- 资助金额:
$ 5.44万 - 项目类别:
Studentship
Lattice Gauge Theory at the Intensity Frontier
强度前沿的格子规范理论
- 批准号:
2310571 - 财政年份:2023
- 资助金额:
$ 5.44万 - 项目类别:
Continuing Grant
symmetry and integrability of ADE matrix model probing critical phenomena of supersymmetric gauge theory by symmetry and integrability
ADE 矩阵模型的对称性和可积性 通过对称性和可积性探讨超对称规范理论的关键现象
- 批准号:
23K03394 - 财政年份:2023
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on gauge theory using the graph zeta functions
利用图zeta函数研究规范理论
- 批准号:
23K03423 - 财政年份:2023
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Gauge Theory and Topology
会议:规范理论与拓扑
- 批准号:
2308798 - 财政年份:2023
- 资助金额:
$ 5.44万 - 项目类别:
Standard Grant
Graphical Methods for Ising Lattice Gauge Theory
Ising 格子规范理论的图解方法
- 批准号:
575522-2022 - 财政年份:2022
- 资助金额:
$ 5.44万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Tensor network models in lattice gauge theory
格子规范理论中的张量网络模型
- 批准号:
573579-2022 - 财政年份:2022
- 资助金额:
$ 5.44万 - 项目类别:
University Undergraduate Student Research Awards
Moduli Spaces of Higgs Bundles, Gauge Theory, and Related Topics
希格斯丛集的模空间、规范理论及相关主题
- 批准号:
2204346 - 财政年份:2022
- 资助金额:
$ 5.44万 - 项目类别:
Standard Grant
Study of both the construction of quantum gravity via coarse-graining of gauge theory and energy on curved spacetime
研究通过粗粒度规范理论构建量子引力和弯曲时空能量
- 批准号:
22K03596 - 财政年份:2022
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonperturbative Gauge Theory
非微扰规范理论
- 批准号:
SAPIN-2020-00044 - 财政年份:2022
- 资助金额:
$ 5.44万 - 项目类别:
Subatomic Physics Envelope - Individual














{{item.name}}会员




