Mathematical analysis of water and air flow in the life and its computer simulation.

生活中水和空气流动的数学分析及其计算机模拟。

基本信息

  • 批准号:
    08640305
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 1997
  • 项目状态:
    已结题

项目摘要

The purpose of the research project is to investigate mathematical aspects of the flow of water and air closely connected to our life, and develop a computer simulation program implemented on PC.The objectives are set as fol lows :1.The finite element method is used for numerical solution of flow equations in order to cope with the complex geometry of the flow domian in question. The governing equations are discretized by using the fractional step method for incompressible viscous fluid flow and using the Taylor-Galerkin's method for flow in shallow waters. The unknowns are interpolated by using the linear triangular element.2.An integrated package of computer simulation with pre- and post-processors is developed concerning the flow of water and air in the life for handy and practical use to assess the flow environment. The computer program is revised on the easy-to-use base reflected from the claims served by tentative users.3.The flows are presented as solutions of initial-boundary value problems of partial differential equations. Domain in the flow simulation often has a so-called open boundaries, which are formed by cutting artificially the real flow domain. The boundary condition on the open boundaries are not a priori given. Suitable boundary conditions are crucial for the success of the computer simulation.We obtained the following results :1.A novel computer simulation program running on PC was developed, and publicised in a book form.2.An upwind-type scheme along the characteristic curves was found appropriate for the condition on the open boundary. The related discussion is presented in the paper, which is submitted to a journal for publication.
本研究项目的目的是研究与我们生活密切相关的水和空气流动的数学方面,并开发一个在PC上实现的计算机模拟程序。目标设定如下:1。本文采用有限元法对流动方程进行数值求解,以解决流动区域的复杂几何问题。对不可压缩粘性流体流动采用分步法离散,对浅水流动采用泰勒-伽辽金法离散。用线性三角元插值未知量。为了方便实际地评估生活中水和空气的流动环境,开发了一套具有前后处理器的综合计算机模拟软件包。计算机程序在易于使用的基础上进行了修改,这反映了暂定用户所提供的要求。这些流动被表示为偏微分方程初边值问题的解。流动模拟中的流域通常有一个所谓的开放边界,它是通过人为切割真实流域而形成的。开放边界上的边界条件不是先验给定的。合适的边界条件是计算机模拟成功的关键。我们得到了以下结果:1。开发了一种在PC机上运行的新颖的计算机模拟程序,并以书的形式出版。在开放边界条件下,沿特征曲线找到了适合的逆风型方案。相关讨论已在论文中提出,并已提交期刊发表。

项目成果

期刊论文数量(47)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
F., Sakata(Y., Hashimoto): "A numerical study on the structure change of collective" Progress in Theoretical Physics. 95. 883-900 (1996)
F.,坂田(Y.,桥本):“集体结构变化的数值研究”理论物理学进展。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Onishi (Y.Ohura): "Identification of boundary displacements in plane elasticity by BEM." Engineering Analysis with Boundary Elements. (to appear). (1998)
K.Onishi (Y.Ohura):“通过边界元法识别平面弹性中的边界位移。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
F.Sakata (N.D.Dang): "GDR in hot nuclei." Proceedings of Japan-Italy Joint Seminar, RIKEN,Tokyo. 123 (1996)
F.Sakata (N.D.Dang):“热核中的东德”。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
F.Sakata (Y.Hashimoto): "A numerical study on the structure change of collective motions" Progress in Theoretical Physics. Vol.95. 883-900 (1996)
F.Sakata(Y.Hashimoto):“集体运动结构变化的数值研究”理论物理学进展。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
F.Sakata (N.D.Dang): "Thermal damping width of the giant dipole resonance in hot nuclei." Physical Reviews. Vol.C55. 2872-2884 (1997)
F.Sakata (N.D.Dang):“热核中巨偶极子共振的热阻尼宽度。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ONISHI Kazuei其他文献

ONISHI Kazuei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ONISHI Kazuei', 18)}}的其他基金

Development of highly accurate numerical method based on finite differences and its application to ill-posed problems of partial differential equations.
基于有限差分的高精度数值方法的发展及其在偏微分方程不适定问题中的应用。
  • 批准号:
    18540108
  • 财政年份:
    2006
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Direct numerical solution to the inverse boundary-value problem of elliptic equations by using the adjoint variational method.
使用伴随变分法直接数值求解椭圆方程反边值问题。
  • 批准号:
    14540099
  • 财政年份:
    2002
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical analysis of flows directly associated with environmental problems.
对与环境问题直接相关的流量进行数学分析。
  • 批准号:
    10640100
  • 财政年份:
    1998
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Co-operative Research on Numerical Analysis of Partial Differential Equations Applied to High Technology.
偏微分方程数值分析应用于高科技的合作研究。
  • 批准号:
    04305013
  • 财政年份:
    1992
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)

相似海外基金

Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
  • 批准号:
    10090067
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Collaborative R&D
Moving away from aeration – utilising computational fluid dynamics modelling ofmechanical mixing within an industrial scale nature-based wastewater treatment system
摆脱曝气 — 在工业规模的基于自然的废水处理系统中利用机械混合的计算流体动力学模型
  • 批准号:
    10092420
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Collaborative R&D
ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
  • 批准号:
    2347497
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
Informing 4D flow MRI haemodynamic outputs with data science, mathematical models and scale-resolving computational fluid dynamics
通过数据科学、数学模型和尺度解析计算流体动力学为 4D 流 MRI 血液动力学输出提供信息
  • 批准号:
    EP/X028321/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Fellowship
Computational fluid dynamics analysis using sophisticated plant models towards the development of digital twins in greenhouse horticulture
使用复杂的植物模型进行计算流体动力学分析,以开发温室园艺中的数字孪生
  • 批准号:
    23K05477
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Data models for large aircraft aerodynamics using next-generation computational fluid dynamics
使用下一代计算流体动力学的大型飞机空气动力学数据模型
  • 批准号:
    2889801
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Studentship
SBIR Phase I: Computational Fluid Dynamics Software for Quantum Computers
SBIR 第一阶段:量子计算机的计算流体动力学软件
  • 批准号:
    2318334
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
Prediction of endovascular treatment effectiveness for cerebral aneurysms using computational fluid dynamics with porous media modeling
使用计算流体动力学和多孔介质模型预测脑动脉瘤的血管内治疗效果
  • 批准号:
    23K15665
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigation of Continuous-Flow Mixing of Non-Newtonian Fluids with Energy-Efficient Coaxial Mixers through Advanced Flow Visualization Techniques and Computational Fluid Dynamics
通过先进的流动可视化技术和计算流体动力学研究使用节能同轴混合器的非​​牛顿流体的连续流动混合
  • 批准号:
    RGPIN-2019-04644
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Discovery Grants Program - Individual
Evaluation of risk factor of acute type A aortic dissection using computational fluid dynamics
利用计算流体动力学评估急性A型主动脉夹层的危险因素
  • 批准号:
    22K20511
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了