Mathematical analysis of flows directly associated with environmental problems.
对与环境问题直接相关的流量进行数学分析。
基本信息
- 批准号:10640100
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of the research project is to investigate mathematical problems in the flow analysis closely connected with the problems of environmental pollution. The research aimes at the development of computer simulation techniques for the protection of the environment in the aquious and atmospheric fields. For the objectives, we obtain the following results :1. The finite element method is used for numerical solution of flow equations in order to cope with the complex geometry of the flow domian in question. The governing equations are discretized by using the fractional step scheme for incompressible viscous fluid flow and using the Taylor-Galerkin's method for the flow in shallow waters.2. Boundary conditions are discussed from the view points of the domain decomposition method and the inverse problems. When relatively small areas are considered for numerical simulation of environmental flow problems, artificial boundaries need to be introduced in the formulation, on which some for … More ms of fictitious boundary values should be prescribed. The values to be prescribed on the artificial boundaries play the crucial role for the success of the simulation. However the boundary values are not known a priori, in fact they constitute unknowns of the problem itself. We found from our numerical experiment on the flow simulation around airfoils that appropriate boundary values can be obtained by the Dirichlet-Neumann alternating method after quite a few times of iteration.3. Laminar flow model turns out to be insufficient for the numerical simulation of flows in the environmental study. We extended our analysis to turbulent models. We concluded that the κ-ε model is the most suitable from the stand points of practical use ; (1) the model is easy-to-use, and (2) data requisite for the implementation of the model are easily accessible. For flows at high Reynolds numbers or order 10^5 in turbulent regime, the finite analytical method was applied for the numerical simulation. The simulation showed good agreement with the corresponding results in physical experiment. Less
该研究项目的目的是研究与环境污染问题密切相关的流动分析中的数学问题。该研究旨在开发用于保护水和大气领域环境保护的计算机模拟技术。对于目标,我们得到以下结果: 1.有限元方法用于流动方程的数值求解,以应对所讨论的流动域的复杂几何形状。不可压缩粘性流体流动采用分数阶格式,浅水流动采用Taylor-Galerkin法对控制方程进行离散化。 2.从域分解法和反问题的角度讨论了边界条件。当考虑相对较小的区域进行环境流问题的数值模拟时,需要在公式中引入人为边界,并在其上规定一些毫秒的虚拟边界值。在人工边界上规定的值对于模拟的成功起着至关重要的作用。然而,边界值不是先验已知的,事实上它们构成了问题本身的未知数。通过对翼型周围流动的数值模拟实验发现,采用狄利克雷-诺依曼交替法经过多次迭代即可得到合适的边界值。 3.事实证明,层流模型不足以对环境研究中的流动进行数值模拟。我们将分析扩展到湍流模型。我们的结论是,从实际应用的角度来看,κ-ε模型是最合适的; (1) 该模型易于使用,(2) 易于获取实施该模型所需的数据。对于湍流状态下高雷诺数或10^5阶的流动,采用有限解析方法进行数值模拟。模拟结果与物理实验的相应结果吻合良好。较少的
项目成果
期刊论文数量(45)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.W.Yan,F.Sakata,Y.Z.Zhuo,and X.Z.Wu: "Dynamic realization of transport phenomenon in finite system."Physical Reviews. E63. 021116 1-14 (2001)
S.W.Yan,F.Sakata,Y.Z.Zhuo,and X.Z.Wu:“有限系统中输运现象的动态实现。”物理评论。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Shirota,K.Onishi,and G.Nakamura: "Inverse boundary value problem with the unknown material."Theoretical and Applied Mechanics. 47. 315-323 (1998)
K.Shirota、K.Onishi 和 G.Nakamura:“未知材料的逆边值问题。”理论与应用力学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Fujima: "Mortar element method for flow problems in primitive variables form." Internat.J.Computatinal Fluid Dynamics. 9. 209-219 (1998)
S.Fujima:“原始变量形式的流动问题的迫击炮单元法。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Kawashita,G.Nakamura: "The poles of the resolvent for the exterior Neumann problem of anisotropic elasticity." SIAM J.Math.Anal.発表予定.
M.Kawashita、G.Nakamura:“各向异性弹性的外部诺伊曼问题的极点。”SIAM J.Math.Anal 计划演示。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Ikehata,G.Nakamura et al.: "Identification of the shape of inclusion of anisotropic elastic body." Applicable Analysis. 発表予定.
M.Ikehata、G.Nakamura 等人:“各向异性弹性体内含物形状的识别。”计划进行演示。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ONISHI Kazuei其他文献
ONISHI Kazuei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ONISHI Kazuei', 18)}}的其他基金
Development of highly accurate numerical method based on finite differences and its application to ill-posed problems of partial differential equations.
基于有限差分的高精度数值方法的发展及其在偏微分方程不适定问题中的应用。
- 批准号:
18540108 - 财政年份:2006
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Direct numerical solution to the inverse boundary-value problem of elliptic equations by using the adjoint variational method.
使用伴随变分法直接数值求解椭圆方程反边值问题。
- 批准号:
14540099 - 财政年份:2002
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical analysis of water and air flow in the life and its computer simulation.
生活中水和空气流动的数学分析及其计算机模拟。
- 批准号:
08640305 - 财政年份:1996
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Co-operative Research on Numerical Analysis of Partial Differential Equations Applied to High Technology.
偏微分方程数值分析应用于高科技的合作研究。
- 批准号:
04305013 - 财政年份:1992
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
相似海外基金
Convective Cloud Dynamics and Turbulence Interactions with Microphysical Processes and the Atmospheric Environment (CLOUDY TIME)
对流云动力学和湍流与微物理过程和大气环境的相互作用(云时)
- 批准号:
NE/X018547/1 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Research Grant
Meteorological downscaling and atmospheric environment prediction using deep learning
利用深度学习进行气象降尺度和大气环境预测
- 批准号:
21H03593 - 财政年份:2021
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Integrated risk evaluation for oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) in atmospheric environment
大气环境中含氧多环芳烃(oxy-PAHs)综合风险评估
- 批准号:
20K10452 - 财政年份:2020
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of anti-corrosion technique of CFRP strengthened steel structures and durability prediction under atmospheric environment
碳纤维增强钢结构防腐技术发展及大气环境下耐久性预测
- 批准号:
19K15074 - 财政年份:2019
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study of the influence of energetic particle precipitation on atmospheric environment in both polar regions
高能粒子降水对两极地区大气环境的影响研究
- 批准号:
19H01952 - 财政年份:2019
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Effects of land conversion from tropical peat swamp forest to oil palm plantations on ecosystem functions and the atmospheric environment
热带泥炭沼泽森林土地转变为油棕种植园对生态系统功能和大气环境的影响
- 批准号:
19H05666 - 财政年份:2019
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Variations and evolutions of Martian atmospheric environment investigated in the collaboration with European and US missions
与欧洲和美国任务合作调查火星大气环境的变化和演变
- 批准号:
19H00707 - 财政年份:2019
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development of teaching materials and the technique proposal about natural disaster and atmospheric environment in region using original-measuring and public-agency-providing data
利用原始测量和公共机构提供的数据开发有关区域自然灾害和大气环境的教材和技术建议
- 批准号:
18K02982 - 财政年份:2018
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimation of trade-offs and clarification of mechanisms on Urban Atmospheric Environment
城市大气环境权衡评估和机制澄清
- 批准号:
17H01926 - 财政年份:2017
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Controlled Atmospheric Environment for Cell Growth and Manipulation
用于细胞生长和操作的受控大气环境
- 批准号:
RTI-2017-00738 - 财政年份:2016
- 资助金额:
$ 1.92万 - 项目类别:
Research Tools and Instruments














{{item.name}}会员




