数理計画法による離散事象システムの動作解析とその応用

离散事件系统的数学规划行为分析及其应用

基本信息

  • 批准号:
    08650460
  • 负责人:
  • 金额:
    $ 1.47万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 1998
  • 项目状态:
    已结题

项目摘要

In this research, we obtained some mathematical programming approaches to reachability problems for place-transition Petri nets which are one of typical models for various kinds of discrete event dynamical systems.An algorithm for the executable firing sequence with the shortest length in the submarking reachability problems (i.e. SMR) is given by general discrete-time Pontryagin s mini mum principle included linear programmings (i.e., "PMP+LP" ).We also obtained algorithms for the executable firing sequence with the prescribed length in the basic marking reachability problems with the known firing count. vector (i.e., MR-FV) via special "PMP+LP" as well as "DP+LP" (i.e., the dynamic programming included linear programmings).These algorithms divide die original problem into d smaller subproblems and have semi-polynomial time complexity provided that checking critical siphons, which is an important future research problem, is neglected, where d is the length of firing sequence of transitions.Note that SMR (MF-FV, resp.) is the most, fundamental reachability problem without (with, resp.) the known firing count vector in si-ate equation of Petri nets.For MR-FV, a new reachability criterion is also given, that is, the reachability for a given Petri net is reduced to one for each strongly-connected and maximal siphon because the firing count vector in MR-FV is in advance specified. Another approach to finding the executable firing sequence in MR-FV by using T-invariants and the extended particular solution of state equation. This approach is expected to be useful for reachability problems of live free-choice Petri nets.
本文研究了离散事件动态系统的典型模型之一-位置变迁Petri网的可达性问题的数学规划方法,利用包含线性规划的广义离散时间Pontryagin极小值原理(即,在基本的标记可达性问题中,我们也得到了在已知触发次数的情况下,具有指定长度的可执行触发序列的算法。矢量(即,MR-FV)通过特殊的“PMP+LP”以及“DP+LP”(即,这些算法将原问题分解为d个更小的子问题,并具有半多项式的时间复杂度,其中d是触发转移序列的长度。是最基本的可达性问题,而不需要(分别)对于MR-FV,给出了一个新的可达性判据,即由于MR-FV中的触发计数向量是预先确定的,因此对于每个强连通的最大虹吸,给定的Petri网的可达性约为1.利用T-不变量和状态方程的扩展特解求MR-FV中可执行触发序列的另一种方法。这种方法有望对自由选择Petri网的可达性问题的研究有所帮助。

项目成果

期刊论文数量(94)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Matsumoto, K.Saikusa: "Minimum Number of Live Minimal Structural Traps to Make a Minimal Deadlock Locally Live in General Petri Nets" IEICE Trans. on Funds. of ECCS. Vol.E81-A.No.1. 164-174 (1998. 01)
T.Matsumoto、K.Saikusa:“在一般 Petri 网中局部产生最小死锁的最小数量的实时最小结构陷阱”IEICE Trans。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Matsumoto: "A minimum principle of Ponyryagin in optimal nonlinear discrete-time systems with terminal constraints and free terminal time and its applications to reachability problems of discrete event systems" Procs.of Japan-USA Symposium on Flexible A
T.Matsumoto:“具有终端约束和自由终端时间的最优非线性离散时间系统中的 Ponyryagin 最小原理及其在离散事件系统可达性问题中的应用”Procs.of Japan-USA Symposium on Flex A
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Matsumoto, Ahmed Tarek: "Finding legal firing sequence of Petri nets by means of dynamic programming included linear programming" Procs.of The 35the IEEE Conf.on Decision and Control. 4459-4466 (1996. 12)
T.Matsumoto、Ahmed Tarek:“通过动态规划(包括线性规划)查找 Petri 网的合法触发序列”Procs.of The 35the IEEE Con​​f.on Decision and Control。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Matsumoto: "Finding legal firing sequence in submarking reachability problems of Petri nets by discrete-time Pontryagin′s minimum principle" Proceedings of ISCAS ′97 (IEEE). 1017-1020 (1997. 6)
T. Matsumoto:“通过离散时间 Pontryagin 最小原理查找 Petri 网子标记可达性问题中的合法触发序列”ISCAS 97 论文集 (IEEE) (1997. 6)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Matsumoto: "Generalized submarking reachability problems with/without a firing count vector and their inverse problems of Petri nets" Technical Report of IEICE (CST95-35). Vol.95, No.471. 47-54 (1996. 01)
T.Matsumoto:“带/不带发射计数向量的广义子标记可达性问题及其 Petri 网的逆问题”IEICE 技术报告 (CST95-35)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MATSUMOTO Tadashi其他文献

MATSUMOTO Tadashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MATSUMOTO Tadashi', 18)}}的其他基金

Novel non-invasive method of analyzing ocular blood flow in cases of retinopathy of prematurity
分析早产儿视网膜病变眼部血流的新型非侵入性方法
  • 批准号:
    17K11435
  • 财政年份:
    2017
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
COnnect All by Turbo NETworks-2: Extension to Correlation Networks (COATNET-2)
Turbo NETworks-2 的 CONnect All:相关网络的扩展 (COATNET-2)
  • 批准号:
    23360170
  • 财政年份:
    2011
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Expression of Ovary-Specific Acidic Protein in Steroidogenic Tissues : A Possible Role in Steroidogenesis
卵巢特异性酸性蛋白在类固醇生成组织中的表达:在类固醇生成中的可能作用
  • 批准号:
    22791550
  • 财政年份:
    2010
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of Teaching Program about Posture and Breathing by Utilizing the Alexander Technique
利用亚历山大技术开发姿势与呼吸教学方案
  • 批准号:
    21530952
  • 财政年份:
    2009
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
COnnect All by Turbo NETworks (COATNET)
Turbo NETworks 的 CONnect All (COATNET)
  • 批准号:
    20360168
  • 财政年份:
    2008
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
On Algebraic Behavioral Analyses of Hybrid Petri Nets
混合Petri网的代数行为分析
  • 批准号:
    19560409
  • 财政年份:
    2007
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On Automatic Generation of a Control Sequence on Discrete Event Systems
离散事件系统控制序列的自动生成
  • 批准号:
    03650342
  • 财政年份:
    1991
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似国自然基金

动态无线传感器网络弹性化容错组网技术与传输机制研究
  • 批准号:
    61001096
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

FMitF: Track II: SMT-Based Reachability Analyzer of NGAC Policies
FMitF:轨道 II:NGAC 策略的基于 SMT 的可达性分析器
  • 批准号:
    2318891
  • 财政年份:
    2023
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Standard Grant
On the Evaluation of Reachability and Sub-pattern Recognition Queries in Very Large Graph Databases
超大型图数据库中的可达性评估和子模式识别查询
  • 批准号:
    RGPIN-2022-02971
  • 财政年份:
    2022
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Discovery Grants Program - Individual
Principled Robotic Decision Making via Reachability
通过可达性进行有原则的机器人决策
  • 批准号:
    RGPIN-2019-04605
  • 财政年份:
    2022
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Discovery Grants Program - Individual
On the reachability and graph matching in graph databases
图数据库中的可达性和图匹配
  • 批准号:
    DDG-2019-04100
  • 财政年份:
    2021
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Discovery Development Grant
Investigation on a general nonlinear control based on mapping learning with controllability and reachability
基于映射学习的可控可达非线性控制研究
  • 批准号:
    21H03518
  • 财政年份:
    2021
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Principled Robotic Decision Making via Reachability
通过可达性进行有原则的机器人决策
  • 批准号:
    RGPIN-2019-04605
  • 财政年份:
    2021
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Discovery Grants Program - Individual
On the reachability and graph matching in graph databases
图数据库中的可达性和图匹配
  • 批准号:
    DDG-2019-04100
  • 财政年份:
    2020
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Discovery Development Grant
An Entropy Approach to Invariance and Reachability of Uncertain Control Systems with Limited Information
有限信息不确定控制系统不变性和可达性的熵方法
  • 批准号:
    2013969
  • 财政年份:
    2020
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Standard Grant
Principled Robotic Decision Making via Reachability
通过可达性进行有原则的机器人决策
  • 批准号:
    RGPIN-2019-04605
  • 财政年份:
    2020
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Discovery Grants Program - Individual
Real-Time Reachability-Based Robotic Safety
基于实时可达性的机器人安全
  • 批准号:
    550544-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.47万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了