On Algebraic Behavioral Analyses of Hybrid Petri Nets
混合Petri网的代数行为分析
基本信息
- 批准号:19560409
- 负责人:
- 金额:$ 2.75万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2007
- 资助国家:日本
- 起止时间:2007 至 2009
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A hybrid Petri net containing both discrete and continuous variables is constructed by discrete Petri nets and continuous Petri nets. Comparison with discrete Petri nets, behaviors of both continuous Petri nets and hybrid Petri nets are very complex and have not been analyzed enough from algebraic approach. In this study, first, a state equation for discrete Petri nets is considered, in which the difference between a destination state and an initial state is fixed, and an arbitrary firing count vector (i.e., a nonnegative integer solution) is completely expressed by elementary T-invariants and fundamental particular solutions. Reachability determination from an initial state to a destination state is algebraically proposed in the bounded space and within finite procedures. Secondly, algebraic analytical approaches of discrete Petri nets are applied to continuous Petri nets and hybrid Petri nets and conditions for applicability to those nets are shown. Thirdly, a novel method for obtaining a discrete system containing only discrete variables from a continuous system with only continuous variables.
由离散Petri网和连续Petri网构成了一个同时包含离散和连续变量的混合Petri网。与离散Petri网相比,连续Petri网和混合Petri网的行为都非常复杂,从代数的角度分析还不够。在这项研究中,首先,考虑离散Petri网的状态方程,其中目的状态和初始状态之间的差异是固定的,并且任意的触发计数向量(即,一个非负整数解)完全由初等T-不变量和基本特解表示。代数地提出了在有界空间和有限过程内从初始状态到目标状态的可达性判定。其次,离散Petri网的代数分析方法被应用到连续Petri网和混合Petri网和适用于这些网的条件。第三,一种新的方法,从一个只有连续变量的连续系统获得一个只有离散变量的离散系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
P/Tペトリネットの初等的インバリアントの導出法の比較,検討
P/T Petri网基本不变量推导方法的比较与研究
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:恐神正博;松本忠;茂呂征一郎
- 通讯作者:茂呂征一郎
On Particular Solutions for State Eqtiation of Autonomous Continuous Petri Nets
自治连续Petri网状态方程的特解
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:T. Matsumoto;M. Osogami;S. Moro
- 通讯作者:S. Moro
Reachability Judgement in P/T Petri Nets by Approximate Algebraic Approach
基于近似代数方法的P/T Petri网可达性判断
- DOI:
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Tadashi Matsumoto;Masahiro Osogami;Seiichirou Moro
- 通讯作者:Seiichirou Moro
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATSUMOTO Tadashi其他文献
MATSUMOTO Tadashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATSUMOTO Tadashi', 18)}}的其他基金
Novel non-invasive method of analyzing ocular blood flow in cases of retinopathy of prematurity
分析早产儿视网膜病变眼部血流的新型非侵入性方法
- 批准号:
17K11435 - 财政年份:2017
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
COnnect All by Turbo NETworks-2: Extension to Correlation Networks (COATNET-2)
Turbo NETworks-2 的 CONnect All:相关网络的扩展 (COATNET-2)
- 批准号:
23360170 - 财政年份:2011
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Expression of Ovary-Specific Acidic Protein in Steroidogenic Tissues : A Possible Role in Steroidogenesis
卵巢特异性酸性蛋白在类固醇生成组织中的表达:在类固醇生成中的可能作用
- 批准号:
22791550 - 财政年份:2010
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development of Teaching Program about Posture and Breathing by Utilizing the Alexander Technique
利用亚历山大技术开发姿势与呼吸教学方案
- 批准号:
21530952 - 财政年份:2009
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
COnnect All by Turbo NETworks (COATNET)
Turbo NETworks 的 CONnect All (COATNET)
- 批准号:
20360168 - 财政年份:2008
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
数理計画法による離散事象システムの動作解析とその応用
离散事件系统的数学规划行为分析及其应用
- 批准号:
08650460 - 财政年份:1996
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On Automatic Generation of a Control Sequence on Discrete Event Systems
离散事件系统控制序列的自动生成
- 批准号:
03650342 - 财政年份:1991
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Nonlinear Quantum Control Engineering
非线性量子控制工程
- 批准号:
DP240101494 - 财政年份:2024
- 资助金额:
$ 2.75万 - 项目类别:
Discovery Projects
Automatic Control Engineering (ACE) Network
自动控制工程(ACE)网络
- 批准号:
EP/X031470/1 - 财政年份:2024
- 资助金额:
$ 2.75万 - 项目类别:
Research Grant
Development of experimental materials and curriculum for practical learning of control engineering
控制工程实践学习实验教材和课程开发
- 批准号:
23K02779 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of complex dynamics of donor specific antibodies in high risk kidney transplantation. Category Control engineering and Healthcare tech
高风险肾移植中供体特异性抗体复杂动态的研究。
- 批准号:
2871808 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别:
Studentship
Theoretical Foundations for Risk-Averse Control Engineering
风险规避控制工程的理论基础
- 批准号:
RGPIN-2022-04140 - 财政年份:2022
- 资助金额:
$ 2.75万 - 项目类别:
Discovery Grants Program - Individual
生体分子の液液相分離制御工学構築による新規創薬モダリティの提唱
通过构建生物分子液-液相分离控制工程提出新药发现模式
- 批准号:
22K18341 - 财政年份:2022
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Theoretical Foundations for Risk-Averse Control Engineering
风险规避控制工程的理论基础
- 批准号:
DGECR-2022-00098 - 财政年份:2022
- 资助金额:
$ 2.75万 - 项目类别:
Discovery Launch Supplement
Robust Coherent Control Engineering for Quantum Systems and Networks
量子系统和网络的鲁棒相干控制工程
- 批准号:
DP210101938 - 财政年份:2021
- 资助金额:
$ 2.75万 - 项目类别:
Discovery Projects
Soft Robotics Control Engineering by Combining Probabilistic Model-Based Control and Sensor Feedback
结合基于概率模型的控制和传感器反馈的软机器人控制工程
- 批准号:
20H00610 - 财政年份:2020
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
CAREER: Practical Control Engineering Principles to Improve the Security and Privacy of Cyber-Physical Systems
职业:提高网络物理系统安全性和隐私性的实用控制工程原理
- 批准号:
1931573 - 财政年份:2019
- 资助金额:
$ 2.75万 - 项目类别:
Continuing Grant














{{item.name}}会员




