Global bifurcations of homoclinic orbits in vector fields

矢量场中同宿轨道的全局分岔

基本信息

  • 批准号:
    10640115
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 1999
  • 项目状态:
    已结题

项目摘要

The results obtained in the project are as follows:1. In relation to a topological invariant of dynamical systems called the Conley index, the transition matrix, which plays an important role in the study of bifurcations of connecting orbits, is generalized for multi-parameter families. As the first step toward developing the Conley index theory for certain types of singularly perturbed vector fields called slow-fast systems, a topological-algebraic condition for the existence of periodic and heteroclinic orbits is obtained when the slow manifold is normally hyperbolic and one-dimensional.2. It is proved that certain type of heteroclinic cycles bifurcates from a codimension three degenerate singularity of vector fields. As a result, the occurrence of chaotic attractors from the degenerate singularity follows.3. Stability of stationary solutions (Couette flows) in fluid motion in rotating cylinders is numerically studied when the cylinders rotate in the same/opposite directions. The problem can be reduced to ODE systems and the validated numerical simulation can be applied. As a result, the critical Taylor number is determined and, by making use of the local bifurcation theory, the existence of Taylor vortex (stationary solution) and bifurcations of periodic solutions (in some cases, wavy Taylor vortex) is rigorously proved.4. Transition phenomena among semi-stable states through chaos in coupled systems of chaotic oscillators is discovered and named as "chaotic itinerancy" by Kaneko, Tsuda and Ikeda. In this project, the creation mechanism of chaotic itinerancy in globally coupled maps (GCM) is studied. From the invariance of GCM with respect to permutations of oscillators, the hiererchical structure of invariant subspaces is determined and is used to prove that the chaotic itinerancy in GCM occurs through crisis in attractors lying in lower dimensional subspaces which destabilize in the complementary directions.
1.对于动力系统的一种称为Conley指数的拓扑不变量,将在连通轨道分叉研究中起重要作用的转移矩阵推广到多参数族中。作为发展某些称为慢快系统的奇摄动向量场的Conley指数理论的第一步,当慢流形是正常双曲的一维时,得到了周期轨道和异宿轨道存在的拓扑-代数条件。证明了从向量场的余维三次退化奇点分叉出某些类型的异宿环。因此,混沌吸引子的出现跟从了简并奇点。数值研究了旋转圆柱体中流体运动的定常解(Couette流)在圆柱体同向和反向旋转时的稳定性。该问题可以归结为常微分方程组的问题,并且可以应用经过验证的数值模拟。确定了临界泰勒数,并利用局部分叉理论,严格证明了泰勒涡(定常解)的存在性和周期解(某些情况下为波浪型泰勒涡)分支的存在性。金子、津田和池田发现了混沌振子耦合系统中半稳态之间的混沌跃迁现象,并将其命名为“混沌巡游”。在本项目中,研究了全局耦合映射(GCM)中混沌游程的产生机制。从GCM关于振子排列的不变性出发,确定了GCM中不变子空间的层次结构,并证明了GCM中的混沌游荡是通过位于低维子空间中的吸引子的危机而发生的,这些吸引子在互补方向上失稳。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T. Nishida, H. Yoshihara, K. Kumagai and Y. Teramoto: "Bifurcation problems for equations of fluid dynamics and computer assisted proof"Taiwanese Journal of Mathematics. Vol.4. 1-9 (2000)
T. Nishida、H. Yoshihara、K. Kumagai 和 Y. Teramoto:“流体动力学方程的分岔问题和计算机辅助证明”台湾数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Murashige,K.Aihara and M.Komuro: "Bifurcation and resonance of a mathematical model for non-linear motion of a flooded ship in waves"Journal of Sound and Vibration. 220. 155-170 (1999)
S.Murashige、K.Aihara 和 M.Komuro:“波浪中被淹没船舶非线性运动数学模型的分岔和共振”声音与振动杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S. Murashige, K. Aihara and M. Komuro: "Bifurcation and resonance of a mathematical model for non-linear motion of a flooded ship in waves"Journal of Sound and Vibration. Vol.220. 155-170 (1999)
S. Murashige、K. Aihara 和 M. Komuro:“波浪中被淹没船舶非线性运动数学模型的分岔和共振”《声音与振动杂志》。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Gedeon, H.Kokubu, K.Mischaikow, H.Oka, and J.Reineck: "Conley index for fast-slow systems I : One-dimensional slow variable"Journal of Dynamics and Differential Equations. 11. 427-470 (1999)
T.Gedeon、H.Kokubu、K.Mischaikow、H.Oka 和 J.Reineck:“快慢系统的康利指数 I:一维慢变量”动力学与微分方程杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
F. Dumortier and H. Kokubu: "Chaotic dynamics in ZィイD22ィエD2-equivariant unfoldings of codimension 3 singularities of vector fields in R嘆(3)"Ergodic Theory and Dynamical Systems. Vol.20. 85-107 (2000)
F. Dumortier 和 H. Kokubu:“R(3) 中向量场的余维 3 奇点的 Z 等变展开中的混沌动力学”遍历理论和动力系统,第 20 卷,85-107 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOKUBU Hiroshi其他文献

KOKUBU Hiroshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOKUBU Hiroshi', 18)}}的其他基金

Novel time-series analysis for dynamics based on topological-computation
基于拓扑计算的新型动力学时间序列分析
  • 批准号:
    24654022
  • 财政年份:
    2012
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Study of Global Structures and Bifurcations of Dynamical Systems including Systems with Large Degrees of Freedom
包括大自由度系统在内的动力系统的整体结构和分岔研究
  • 批准号:
    21340035
  • 财政年份:
    2009
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study of Global Bifurcations of Dynamical Systems for Understandings of Chaos and Systems with Large Degrees of Freedom
研究动力系统的全局分岔以理解混沌和大自由度系统
  • 批准号:
    17340045
  • 财政年份:
    2005
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Bifurcation theoretical approach to chaotic dynamics and to systems with large degrees of freedom
混沌动力学和大自由度系统的分岔理论方法
  • 批准号:
    14340055
  • 财政年份:
    2002
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似国自然基金

偶偶核集体带DeltaI=4bifurcation现象和拉伸效应的机制
  • 批准号:
    19875020
  • 批准年份:
    1998
  • 资助金额:
    7.5 万元
  • 项目类别:
    面上项目
化学反应器设计中的分支(Bifurcation)问题
  • 批准号:
    28670493
  • 批准年份:
    1986
  • 资助金额:
    2.5 万元
  • 项目类别:
    面上项目

相似海外基金

Mechanism of grazing bifurcation and mass unification in two-mass collisional vibration systems
二质量碰撞振动系统中的掠分岔与质量统一机制
  • 批准号:
    23K13353
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Dynamic bifurcation of patterns through spatio-temporal heterogeneity
通过时空异质性动态分叉模式
  • 批准号:
    2307650
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Multiphysics of bifurcation phenomenon in nanostructures: Mechanical design of controlling brittle-ductile transition
纳米结构分岔现象的多物理场:控制脆塑转变的机械设计
  • 批准号:
    23H01295
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Patient-Specific Simulations to Guide Coronary Bifurcation Stenting
指导冠状动脉分叉支架置入的患者特异性模拟
  • 批准号:
    10810399
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
The clarification of reaction path bifurcation mechanisms affected by nuclear quantum effects
核量子效应影响的反应路径分岔机制的阐明
  • 批准号:
    23K04675
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Control of Carotid Artery Bifurcation Blood Flow
颈动脉分叉血流的控制
  • 批准号:
    575625-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Bifurcation Theory and Abrupt Climate Change
分岔理论与气候突变
  • 批准号:
    RGPIN-2020-05009
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Construction of ultradiscrete dynamical systems for bifurcation phenomena in nonlinear nonequilibrium systems
非线性非平衡系统中分岔现象的超离散动力系统的构建
  • 批准号:
    22K03442
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Complex Dynamics in Biological Systems: A Bifurcation Theory Approach
生物系统中的复杂动力学:分岔理论方法
  • 批准号:
    RGPIN-2020-06414
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Data-Driven Approaches to Identify Biomarkers for Guiding Coronary Artery Bifurcation Lesion Interventions from Patient-Specific Hemodynamic Models
从患者特异性血流动力学模型中识别生物标志物的数据驱动方法,用于指导冠状动脉分叉病变干预
  • 批准号:
    10373696
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了