Bifurcation theoretical approach to chaotic dynamics and to systems with large degrees of freedom

混沌动力学和大自由度系统的分岔理论方法

基本信息

  • 批准号:
    14340055
  • 负责人:
  • 金额:
    $ 9.02万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

Global structures and bifurcations of dynamical systems, with special emphasis on chaos-complicated and unpredictable behavior in dynamics-and systems of large degrees of freedom such as PDEs and coupled systems, are studied from various different points of view and many interesting results are obtained. As some of main results in this project, Kokubu (1)showed the existence of a singular invariant set called "singularly degenerate heteroclinic cycle" in the Lorenz system and its alike, from which a chaotic attractor of geometric Lorenz type is proven to bifurcate, (2)developed a theory describing the structure of singularly perturbed vector fields with using a topological invariant called Conley index, obtained a method to show the existence of periodic and chaotic solutions in such systems under suitable setting, and applied it to several concrete problems. Shishikura studied complex analytic dynamical systems, and in particular developed a renormalization theory for parabolic fixed points, which will be a new and very powerful tool for studying the structure and bifurcation of such systems. Asaoka studied dynamical systems with a sort of hyperbolicity called projectively Anosov structure and completed a classification in the case of 3-dimensional flows. Combining rigorous computation with topological methods such as the Conley index theory, Arai obtained several interesting results on hyperbolicity and global bifurcations in the Henon maps. Tsujii studied dynamical systems from ergodic theory viewpoint and obtained a general result on the existence of good invariant measures in 2-dimensional partially hyperbolic systems. Nishiura studied complicated interesting transient behavior observed in some kinds of PDEs called self-replicating and self-destruction patterns and clarified its mechanism by using dynamical system theory. Other results on systems with large degrees of freedom include Komuro's detailed analysis on chaotic itenerancy in globally coupled maps.
从各种不同的角度研究了动态系统的全球结构和动力学系统的全球结构和动力学系统,并特别强调了诸如PDES和耦合系统的动力学和系统中的混乱复杂和不可预测的行为,并获得了许多有趣的结果。 As some of main results in this project, Kokubu (1)showed the existence of a singular invariant set called "singularly degenerate heteroclinic cycle" in the Lorenz system and its alike, from which a chaotic attractor of geometric Lorenz type is proven to bifurcate, (2)developed a theory describing the structure of singularly perturbed vector fields with using a topological invariant called Conley index,获得了一种在适当的环境下显示在此类系统中周期性和混乱解决方案存在的方法,并将其应用于几个具体问题。 Shishikura研究了复杂的分析动力学系统,尤其是为抛物线固定点开发了一种重新归一化的理论,这将是研究此类系统的结构和分叉的新型且非常强大的工具。 Asaoka研究了具有一种称为Project Anosov结构的双波利度的动力系统,并在3维流量的情况下完成了分类。 Arai将严格的计算与Conley指数理论(例如Conley指数理论)相结合,在亨逊地图中获得了几个有趣的结果。 Tsujii从厄贡理论的角度研究了动力系统,并获得了二维部分双曲线系统中良好不变测量的一般结果。 Nishiura研究了在某种称为自我复制和自我毁灭模式的PDE中观察到的复杂有趣的瞬态行为,并使用动力学系统理论阐明了其机制。具有较大自由度的系统的其他结果包括Komuro对全球耦合地图中混沌效率的详细分析。

项目成果

期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Linearity of exceptional set for maps of P_k(C)
P_k(C) 映射的异常集线性
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J.-Y.Briend;S.Cantat;M.Shishikura
  • 通讯作者:
    M.Shishikura
Smoothness of solenoidal attractors
Chaotic solutions in slowly varying perturbations of Hamiltonian systems with applications to shallow water sloshing
哈密​​顿系统缓慢变化扰动的混沌解及其在浅水晃动中的应用
Equivalence of graded module braids and interlocking sequences
分级模块编织层和联锁序列的等效性
M.Kuwamura, E.Yanagida: "The Eclhaus and zigzag instability criteria in gradient/skew gradient dissipative systems"Physica D. 175. 185-195 (2003)
M.Kuwamura、E.Yanagida:“梯度/斜梯度耗散系统中的 Eclhaus 和锯齿形不稳定准则”Physica D. 175. 185-195 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOKUBU Hiroshi其他文献

KOKUBU Hiroshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOKUBU Hiroshi', 18)}}的其他基金

Novel time-series analysis for dynamics based on topological-computation
基于拓扑计算的新型动力学时间序列分析
  • 批准号:
    24654022
  • 财政年份:
    2012
  • 资助金额:
    $ 9.02万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Study of Global Structures and Bifurcations of Dynamical Systems including Systems with Large Degrees of Freedom
包括大自由度系统在内的动力系统的整体结构和分岔研究
  • 批准号:
    21340035
  • 财政年份:
    2009
  • 资助金额:
    $ 9.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study of Global Bifurcations of Dynamical Systems for Understandings of Chaos and Systems with Large Degrees of Freedom
研究动力系统的全局分岔以理解混沌和大自由度系统
  • 批准号:
    17340045
  • 财政年份:
    2005
  • 资助金额:
    $ 9.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Global bifurcations of homoclinic orbits in vector fields
矢量场中同宿轨道的全局分岔
  • 批准号:
    10640115
  • 财政年份:
    1998
  • 资助金额:
    $ 9.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

三维时空视角下全球极端高温事件的形态结构和动态演变机制
  • 批准号:
    42371028
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
全球变化背景下富营养化和升温对南亚热带水库浮游生物营养结构和食物链效率的化学计量调节机制
  • 批准号:
    32371617
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
战略研究类:全球电性结构模型构建、发展及应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    23 万元
  • 项目类别:
战略研究类:全球电性结构模型构建、发展及应用
  • 批准号:
    42242405
  • 批准年份:
    2022
  • 资助金额:
    23.00 万元
  • 项目类别:
    专项项目
亚洲季风区大气含水量对强雷暴垂直结构的影响及其对全球变暖的响应
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Pursuit of explicit representation formula using elliptic and analysis of the global bifurcation structure
椭圆显式表示公式的追寻及全局分叉结构的分析
  • 批准号:
    15K04972
  • 财政年份:
    2015
  • 资助金额:
    $ 9.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Global bifurcation structure of stationary patterns arising in the SKT model with nonlinear diffusion
非线性扩散 SKT 模型中出现的稳态模式的全局分叉结构
  • 批准号:
    15K04948
  • 财政年份:
    2015
  • 资助金额:
    $ 9.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on profiles and the global bifurcation structure by explicit representation formula using elliptic functions
利用椭圆函数显式表示公式研究轮廓和全局分叉结构
  • 批准号:
    24540221
  • 财政年份:
    2012
  • 资助金额:
    $ 9.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of global structure and invariants of symplectic quotients
辛商的全局结构和不变量的研究
  • 批准号:
    21540094
  • 财政年份:
    2009
  • 资助金额:
    $ 9.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applied Analysis for Nonlinear Systems
非线性系统的应用分析
  • 批准号:
    14340035
  • 财政年份:
    2002
  • 资助金额:
    $ 9.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了